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Abstract.We calculate basic values of the double sine function. The algebraicity for some
special values is proved. Its behavior in the fundamental domain is also studied. Especially
we show that it has just two extremes: one relative maximum and one relative minimum.
Asymptotic formulas for these extremal values are proved.
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1 Introduction

The double sine function was discovered by Hölder [H] in 1886 as a generalization of the
usual sine function. It was defined by the infinite product

F (x) = ex

∞∏
n=1

((
1− x

n

1 + x
n

)n

e2x

)
.

Hölder proved basic properties of F (x) containing the periodicity and the multiplication
formula. About ninety years later, Shintani [S] constructed the normalized double sine
function F (x, (ω1, ω2)) to investigate Kronecker’s Jugendtraum for real quadratic fields.
Hölder’s double sine function F (x) is expressed by Shintani’s double sine function as
F (x) = F (1−x, (1, 1)). We studied these double sine functions in previous papers [K1]-[K4]
[KK1]-[KK5] [KW1] [KW2] with various applications and generalizations. There also exists
a physical application such as Jimbo-Miwa [JM]. Thus, the double sine function is an im-
portant mathematical object, but its study is still in a primitive stage. For example we do
not know the precise behaviors concerning extermal values. In this paper we investigate this
basic problem. The difficulty of this problem is coming from the fact that we do not have
sufficient knowledge about the derivatives of the double sine function in general. We refer
to [KK1] [KW1] [K3] for related results.
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For later use, we recall the general construction of normalized multiple sine functions
following [K1] [K2] [KK1]. The normalized multiple sine function of period ω = (ω1, ..., ωr)
for ω1, ..., ωr > 0 is defined as

Sr(x, ω) =

( ∞∏∐
n1,...,nr=0

(n1ω1 + · · ·+ nrωr + x)

)

×
( ∞∏∐

m1,...,mr=1

(m1ω1 + · · ·+ mrωr − x)

)(−1)r−1

,

where the zeta reguralized product
∏∐

of Deninger [D] is used. Alternatively, Sr(x, ω) is
written as

Sr(x, ω) = Γr(x, ω)−1Γr(ω1 + · · ·+ ωr − x, ω)(−1)r

in terms of the regularized multiple gamma function

Γr(x, ω) =

( ∞∏∐
n1,...,nr=0

(n1ω1 + · · ·+ nrωr + x)

)−1

= exp

(
∂

∂s
ζr(s, x, ω)

∣∣∣∣
s=0

)
.

Here

ζr(s, x, ω) =
∞∑

n1,...,nr=0

(n1ω1 + · · ·+ nrωr + x)−s

is the multiple Hurwitz zeta function defined by Barnes [B]. The case r = 1 is reduced to
the usual gamma function and sine function:

Γ1(x, ω) =
Γ(x/ω)√

2π
ω

x
ω
− 1

2

and

S1(x, ω) =
2π

Γ( x
ω
)Γ(1− x

ω
)

= 2 sin
(πx

ω

)
.

For simplicity we write

Γr(x) = Γr(x, (1, ..., 1))

and

Sr(x) = Sr(x, (1, ..., 1)).
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As proved in [KK1] the double sine function F (x) of Hölder [H] is identified as

F (x) = S2(1− x, (1, 1))

= S2(1− x)

= S2(x)−1S1(x),

and the double sine function F (x, (ω1, ω2)) of Shintani [S] is nothing but

F (x, (ω1, ω2)) = S2(x, (ω1, ω2)).

On the other hand another type of multiple sine function Sr(x), which we call the
primitive multiple sine function in [KK1], is defined as

Sr(x) = exp

(
xr−1

r − 1

) ∞∏
n=1

(
Pr

(x

n

)
Pr

(
−x

n

)(−1)r−1
)nr−1

for r ≥ 2 with

Pr(u) = (1− u) exp

(
u +

u2

2
+ · · ·+ ur

r

)
.

Hölder’s double sine function is F (x) = S2(x) and Sr(x) is also written via Sr(x) explicitly
(see [KK1]).

Now we describe our results. We look at the behavior of S2(x, (ω1, ω2)) on the real line.
From the basic periodicity

S2(x + ω1 + ω2, (ω1, ω2)) = − S2(x, (ω1, ω2))

4 sin(πx
ω1

) sin(πx
ω2

)

proved in [KK1] in a more generalized form, we may restrict ourselves to the fundamental
domain 0 ≤ x < ω1 + ω2. Since S2(x, (ω2, ω1)) = S2(x, (ω1, ω2)) we may assume 0 < ω1 ≤ ω2

without the loss of generality.
First the basic values are given in the following theorem.

Theorem 1

(1)

S2

(
ω1 + ω2

2
, (ω1, ω2)

)
= 1.
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(2)

S2

(ω1

2
, (ω1, ω2)

)
= S2

(ω2

2
, (ω1, ω2)

)
=
√

2.

(3)

S2

(
ω1 +

ω2

2
, (ω1, ω2)

)
= S2

(
ω2 +

ω1

2
, (ω1, ω2)

)
=

√
2

2
.

(4)

S2(ω1, (ω1, ω2)) =

√
ω2

ω1

.

(5)

S2(ω2, (ω1, ω2)) =

√
ω1

ω2

.

We find extremal values as follows:

Theorem 2 Let 0 < ω1 ≤ ω2. Then we have:

(1) The double sine function S2(x, (ω1, ω2)) has just two extremes S2(αmax(ω1, ω2), (ω1, ω2))
and S2(αmin(ω1, ω2), (ω1, ω2)) in 0 ≤ x < ω1 + ω2, where

0 < αmax(ω1, ω2) < αmin(ω1, ω2) < ω1 + ω2.

(2) S2(αmax(ω1, ω2), (ω1, ω2)) is a relative maximum and

ω1

2
≤ αmax(ω1, ω2) ≤ ω2

2
.

(3) S2(αmin(ω1, ω2), (ω1, ω2)) is a relative minimum and

ω1 +
ω2

2
≤ αmin(ω1, ω2) ≤ ω2 +

ω1

2
.

(4)

αmax(ω1, ω2) + αmin(ω1, ω2) = ω1 + ω2.

(5)

S2(αmax(ω1, ω2), (ω1, ω2))S2(αmin(ω1, ω2), (ω1, ω2)) = 1.

The asymptotic results for the extremal values are shown as follows:
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Theorem 3

(1)

lim
t↓0

αmax(1, t) =
1

6
.

(2)

lim
t→∞

αmax(1, t)

t
=

1

6
.

(3)

lim
t↓0

αmin(1, t) =
5

6
.

(4)

lim
t→∞

αmin(1, t)

t
=

5

6
.

(5)

lim
ω1
ω2
→0,∞

αmax(ω1, ω2)

ω1 + ω2

=
1

6
.

(6)

lim
ω1
ω2
→0,∞

αmin(ω1, ω2)

ω1 + ω2

=
5

6
.

Theorem 4

(1)

lim sup
t↓0

log S2(αmax(1, t), (1, t))

1/t
≤ 1

6
.

(2)

lim inf
t↓0

log S2(αmax(1, t), (1, t))

1/t
≥ 1

6
log

(
3e

π

)
.

(3)

lim sup
t→∞

log S2(αmax(1, t), (1, t))

t
≤ 1

6
.

(4)

lim inf
t→∞

log S2(αmax(1, t), (1, t))

t
≥ 1

6
log

(
3e

π

)
.

(5)

lim inf
t↓0

log S2(αmin(1, t), (1, t))

1/t
≥ −1

6
.
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(6)

lim sup
t↓0

log S2(αmin(1, t), (1, t))

1/t
≤ −1

6
log

(
3e

π

)
.

(7)

lim inf
t→∞

log S2(αmin(1, t), (1, t))

t
≥ −1

6
.

(8)

lim sup
t→∞

log S2(αmin(1, t), (1, t))

t
≤ −1

6
log

(
3e

π

)
.

We show the following algebraicity result:

Theorem 5 Let N1 and N2 be positive integers with (N1, N2) = 1 or 2. Then the

value S2(m, (N1, N2)) is an algebraic number in Q
(

sin 2π
Ni

, cos 2π
Ni

,
√

Ni

∣∣∣ i = 1, 2
)

for

m = 1, ..., N1 + N2 − 1.

Examples

S2(1, (4, 6)) = 1, S2(2, (4, 6)) =
√

2, S2(3, (4, 6)) =
√

2,

S2(4, (4, 6)) =

√
3

2
, S2(5, (4, 6)) = 1, S2(6, (4, 6)) =

√
2

3
,

S2(7, (4, 6)) =
1√
2
, S2(8, (4, 6)) =

1√
2
, S2(9, (4, 6)) = 1.

We obtain the following result in the case of a period of a special type.

Theorem 6

(1) For an integer n ≥ 1,

S2(n, (1, 6n)) = S2(n + 1, (1, 6n)) = max{S2(m, (1, 6n)) | m = 1, ..., 6n}

and

n < αmax(1, 6n) < n + 1.
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(2)

lim sup
n→∞

log S2(n, (1, 6n))

n
≤ 1.

(3)

lim inf
n→∞

log S2(n, (1, 6n))

n
≥ log

(
3e

π

)
.

We make a few remarks. Algebraic natures of special values of the double sine function
are very interesting from arithmetic view points. Values in Theorems 5 and 6 are examples
of N -division values of the double sine function for N = 1 and 2. General N -division values
would be important to realize Kronecker’s Jugendtraum as indicated first by Shintani [S].
Moreover, extremal values appearing in Theorems 2 and 4 are quite mysterious. Our results
can be generalized to the case of the multiple sine function to some extent. We will treat
generalizations on another opportunity.

2 Special values: Proof of Theorem 1

Proof of Theorem 1

(1) This central value comes from the definition

S2

(
ω1 + ω2

2
, (ω1, ω2)

)
=

Γ2

(
ω1+ω2

2
, (ω1, ω2)

)

Γ2

(
ω1+ω2

2
, (ω1, ω2)

) = 1.

(2) We have

S2

(ω1

2
, (ω1, ω2)

)
=

Γ2

(
ω1

2
+ ω2, (ω1, ω2)

)

Γ2

(
ω1

2
, (ω1, ω2)

) = Γ1

(ω1

2
, ω1

)−1

,

where we used the (quasi-)periodicity

Γ2(x + ω2, (ω1, ω2)) = Γ2(x, (ω1, ω2))Γ1(x, ω1)
−1.

Notice that

Γ1(x, ω) =
Γ( x

ω
)√

2π
ω

x
ω
− 1

2 .
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Hence

Γ1

(ω

2
, ω

)
=

Γ(1
2
)√

2π
ω

1
2
− 1

2 =
1√
2
.

Thus

S2

(ω1

2
, (ω1, ω2)

)
=
√

2.

By symmetry we also have

S2

(ω2

2
, (ω1, ω2)

)
=
√

2.

(3) By the reflection S2(ω1 + ω2 − x, (ω1, ω2)) = S2(x, (ω1, ω2))
−1 we have

S2

(
ω1 +

ω2

2
, (ω1, ω2)

)
= S2

(ω2

2
, (ω1, ω2)

)−1

=

√
2

2

and

S2

(
ω2 +

ω1

2
, (ω1, ω2)

)
= S2

(ω1

2
, (ω1, ω2)

)−1

=

√
2

2
.

(4) First, we remark that

S2 (ω1, (ω1, ω2)) =
Γ2(ω2, (ω1, ω2))

Γ2(ω1, (ω1, ω2))

= lim
x→0

Γ2(ω2 + x, (ω1, ω2))

Γ2(ω1 + x, (ω1, ω2))
.

Here we use

Γ2(ω2 + x, (ω1, ω2))

Γ2(ω1 + x, (ω1, ω2))
=

Γ2(x, (ω1, ω2))Γ1(x, ω1)
−1

Γ2(x, (ω1, ω2))Γ1(x, ω2)−1

=
Γ1(x, ω2)

Γ1(x, ω1)

=
Γ( x

ω2
)ω

x
ω2
− 1

2

2

Γ( x
ω1

)ω
x

ω1
− 1

2

1

.
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Hence we obtain

S2 (ω1, (ω1, ω2)) = lim
x→0

Γ( x
ω2

)ω
x

ω2
− 1

2

2

Γ( x
ω1

)ω
x

ω1
− 1

2

1

= lim
x→0

ω2

x
ω
− 1

2
2

ω1

x
ω
− 1

2
1

=

√
ω2

ω1

.

By symmetry (or from S2 (ω2, (ω1, ω2)) = S2 (ω1, (ω1, ω2))
−1) we have

S2 (ω2, (ω1, ω2)) =

√
ω1

ω2

.

Remark From the relation

S2 (ω1, (ω1, ω2)) = lim
x→0

S2 (ω1 + x, (ω1, ω2))

= lim
x→0

S2 (x, (ω1, ω2))

S1(x, ω2)

=
S ′2(0, (ω1, ω2))

S ′1(0, ω2)

=
ω2

2π
S ′2(0, (ω1, ω2))

we see that

S2 (ω1, (ω1, ω2)) =

√
ω2

ω1

⇐⇒ S ′2(0, (ω1, ω2)) =
2π√
ω1ω2

⇐⇒
symmetry

S2 (ω2, (ω1, ω2)) =

√
ω1

ω2

.

We refer to [K3] for a direct proof of S ′2(0, (ω1, ω2)) = 2π√
ω1ω2

.

3 Extermal points: Proof of Theorems 2 and 3

Proof of Theorem 2

To simplify the notation we put S(x) = S2(x, (ω1, ω2)) here. Then

S(x) = Γ2(x, (ω1, ω2))
−1Γ2(ω1 + ω2 − x, (ω1, ω2))
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with

Γ2(x, (ω1, ω2)) = exp

(
∂

∂s
ζ2(0, x, (ω1, ω2))

)

for

ζ2(s, x, (ω1, ω2)) =
∑

n1,n2≥0

(n1ω1 + n2ω2 + x)−s.

We notice that ζ2(s, x, (ω1, ω2)) converges absolutely in Re(s) > 2 and it has a meromorphic
continuation to all s ∈ C. Moreover ζ2(s, x, (ω1, ω2)) is holomorphic at s = 0.

Since

log S(x) = − log Γ2(x, (ω1, ω2)) + log Γ2(ω1 + ω2 − x, (ω1, ω2))

= − ∂

∂s
ζ2(0, x, (ω1, ω2)) +

∂

∂s
ζ2(0, ω1 + ω2 − x, (ω1, ω2))

we have

S ′

S
(x) = − ∂2

∂s∂x
ζ2(0, x, (ω1, ω2))− ∂2

∂s∂x
ζ2(0, ω1 + ω2 − x, (ω1, ω2)).

Hence
(

S ′

S

)′
(x) = − ∂3

∂s∂x2
ζ2(0, x, (ω1, ω2)) +

∂3

∂s∂x2
ζ2(0, ω1 + ω2 − x, (ω1, ω2))

and
(

S ′

S

)′′
(x) = − ∂4

∂s∂x3
ζ2(0, x, (ω1, ω2))− ∂4

∂s∂x3
ζ2(0, ω1 + ω2 − x, (ω1, ω2))

= 2

( ∑
n1,n2≥0

(n1ω1 + n2ω2 + x)−3 +
∑

m1,m2≥1

(m1ω1 + m2ω2 − x)−3

)
,

where we use the relation

∂3

∂x3
ζ2(s, x, (ω1, ω2)) = (−s)(−s− 1)(−s− 2)ζ2(s + 3, x, (ω1, ω2))

coming from

∂

∂x
ζ2(s, x, (ω1, ω2)) =

∂

∂x

( ∑
n1,n2≥0

(n1ω1 + n2ω2 + x)−s

)

= −s
∑

n1,n2≥0

(n1ω1 + n2ω2 + x)−s−1

= −sζ2(s + 1, x, (ω1, ω2)).
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Thus
(

S ′

S

)′′
(x) > 0

in 0 < x < ω1 + ω2 and

(
S ′

S

)′ (
ω1 + ω2

2

)
= 0.

This shows Figure 1. We show that S ′
(

ω1+ω2

2

)
< 0. Suppose that

S ′
(

ω1 + ω2

2

)
≥ 0.

Then

S ′

S

(
ω1 + ω2

2

)
≥ 0

and

S ′

S
(x) ≥ 0 in 0 < x < ω1 + ω2

since
(

S′
S

)′
(x) > 0 in ω1+ω2

2
< x < ω1 + ω2 and

(
S′
S

)′
(x) < 0 in 0 < x < ω1+ω2

2
. Hence

S ′(x) ≥ 0 in 0 < x < ω1 + ω2.

Thus, especially

S
(ω1

2

)
≤ S

(
ω1 + ω2

2

)
.

But, this contradicts Theorem 1(1)(2):
√

2 > 1. So we conclude that

S ′
(

ω1 + ω2

2

)
< 0.

Thus we get Figure 2. Hence there exist uniquely α and β in 0 < α < β < ω1 +ω2 such that
S ′(α) = S ′(β) = 0; notice that S(0) = 0 and lim

x↑ω1+ω2

S(x) = +∞. Now, inequalities

ω1

2
≤ α ≤ ω2

2
and ω1 +

ω2

2
≤ β ≤ ω2 +

ω1

2
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are seen with Theorem 1(1)(3) considered. Moreover

S ′(ω1 + ω2 − x) = − S ′(x)

S(x)2

shows that β = ω1 + ω2 − α. Thus we get Theorem 2. Consequently we have Figure 3.

Proof of Theorem 3

Properties (5) and (6) follow from (1) (2) and (3) (4), respectively. From the symmetry

S2(x, (ω1, ω2)) = S2(x, (ω2, ω1))

and the homogeneity

S2(x, (ω1, ω2)) = S2(cx, (cω1, cω2))

for c > 0 (see [KK1]) we see that

αmax(ω1, ω2) = αmax(ω2, ω1)

and

αmax(ω1, ω2) =
αmax(cω1, cω2)

c
.

In particular

αmax

(
1,

1

t

)
= αmax

(
1

t
, 1

)
=

αmax(1, t)

t
.

Hence we find that (1) implies (2). As we also have

αmin(1, t) = 1 + t− αmax(1, t)

we see (1) implies (3) and that (2) implies (4). Therefore it suffices to show (1).

Proof of (1)

Let 0 < t < 1
6

and put N(t) = [ 1
6t

] + 1. We show that

(N(t)− 1)t ≤ αmax(1, t) ≤ (N(t) + 1)t.

If this is proved, we have

1

6
− t < αmax(1, t) ≤ 1

6
+ 2t
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from

1

6t
< N(t) ≤ 1

6t
+ 1.

Hence we get

lim
t→0

αmax(1, t) =
1

6
.

Proof of αmax(1, t) ≥ (N(t)− 1)t

From 0 < (N(t)− 1)t ≤ 1
6
, we see that

S2(N(t)t, (1, t))

S2((N(t)− 1)t, (1, t))
=

1

2 sin(π(N(t)− 1)t)
≥ 1.

Hence

S2(N(t)t, (1, t)) ≥ S2((N(t)− 1)t, (1, t)).

Suppose that (N(t)− 1)t > αmax(1, t). Then

αmax(1, t) < (N(t)− 1)t

< N(t)t

≤ 1

6
+ t

<
1

2
.

So the decreasing nature of S2(x, (1, t)) on (αmax(1, t),
1
2
) implies

S2(N(t)t, (1, t)) < S2((N(t)− 1)t, (1, t)).

This gives a contradiction. Hence

(N(t)− 1)t ≤ αmax(1, t).

Proof of αmax(1, t) ≤ (N(t) + 1)t

From 1
2

> N(t)t > 1
6
, we get

S2((N(t) + 1)t, (1, t))

S2(N(t)t, (1, t))
=

1

2 sin(πN(t)t)
< 1.
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Hence

S2((N(t) + 1)t, (1, t)) < S2(N(t)t, (1, t)).

Suppose that (N(t)+1)t < αmax(1, t). Then the increasing nature of S2(x, (1, t)) on (0, αmax(1, t))
implies

S2(N(t)t, (1, t)) < S2((N(t) + 1)t, (1, t)).

This gives the contradiction. Hence

αmax(1, t) ≤ (N(t) + 1)t.

4 Proof of Theorem 4

It suffices to show (1) and (2), since (3) and (4) follow from them by the change of variable
t to 1

t
; (5)-(8) come from (1)-(4) by

S2(αmin(1, t), (1, t)) = S2(αmax(1, t), (1, t))
−1.

To prove (1) and (2) we show the following facts: Let 0 < t < 1
6

and put N(t) = [ 1
6t

] + 1 as
in the proof of Theorem 3. Then

(a)

S2(αmax(1, t), (1, t)) ≤ 1√
t4 sin(πt) sin(2πt)

(
6N(t)−2tN(t)−2(N(t)− 2)!

)−1
,

(b)

S2(αmax(1, t), (1, t)) ≥ 1√
t

(
1

2
(2π)N(t)−2tN(t)−2N(t)!

)−1

.

Moreover

(c)

lim
t↓0

(N(t)− 2) log 1
t
− (N(t)− 2) log 6− log((N(t)− 2)!)

1/t
=

1

6
,

(d)

lim
t↓0

(N(t)− 2) log 1
t
− (N(t)− 2) log(2π)− log(N(t)!)

1/t
=

1

6
log

(
3e

π

)
.
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First we check that (1) and (2) follow from (a)-(d). This is easy since

lim sup
t↓0

log S2(αmax(1, t), (1, t))

1/t

≤
(a)

lim sup
t↓0

(N(t)− 2) log 1
t
− (N(t)− 2) log 6− log((N(t)− 2)!)− log(

√
t4 sin(πt) sin(2πt))

1/t

=
(c)

1

6

and

lim inf
t↓0

log S2(αmax(1, t), (1, t))

1/t

≥
(b)

lim inf
t↓0

(N(t)− 2) log 1
t
− (N(t)− 2) log(2π)− log(N(t)!)− log(

√
t1
2
)

1/t

=
(d)

1

6
log

(
3e

π

)
.

Now we show (a)-(d).

Proof of (a)(b)

Using

S2(αmax(1, t)− (l − 1)t, (1, t)) = S2(αmax(1, t)− lt, (1, t))S1(αmax(1, t)− lt)−1

for l = 1, ..., N(t)− 2, we have

S2(αmax(1, t), (1, t)) = S2(αmax(1, t)− (N(t)− 2)t, (1, t))

N(t)−2∏

l=1

S1(αmax(1, t)− lt)−1.

From the inequalites

(N(t)− 1)t ≤ αmax(1, t) ≤ (N(t) + 1)t

shown in the proof of Theorem 3, we see that

t ≤ αmax(1, t)− (N(t)− 2)t ≤ 3t.

Hence

S2(αmax(1, t), (1, t)) ≤ S2(3t, (1, t))

N(t)−2∏

l=1

S1((N(t)− 1− l)t)−1

15



and

S2(αmax(1, t), (1, t)) ≥ S2(t, (1, t))

N(t)−2∏

l=1

S1((N(t) + 1− l)t)−1.

Here we notice that

S2(t, (1, t)) =
1√
t

and

S2(3t, (1, t)) =
1√

t4 sin(πt) sin(2πt)
.

The former identity is Theorem 1(5) and the latter is obtained from

S2(3t, (1, t)) = S2(2t, (1, t))S1(2t)
−1

= S2(t, (1, t))S1(t)
−1S1(2t)

−1.

Remarking

S1(x) = 2 sin(πx) ≤ 2πx for 0 < x <
1

2

and

S1(x) = 2 sin(πx) ≥ 6x for 0 < x <
1

6

we see that

N(t)−2∏

l=1

S1((N(t)− 1− l)t) ≥
N(t)−2∏

l=1

(6(N(t)− 1− l)t)

= 6N(t)−2tN(t)−2(N(t)− 2)!,

where we used

0 < (N(t)− 2)t <
1

6
,

and that

N(t)−2∏

l=1

S1((N(t) + 1− l)t) ≤
N(t)−2∏

l=1

(2π(N(t) + 1− l)t)

=
1

2
(2π)N(t)−2tN(t)−2N(t)!.

16



Combining these inequalities we get (a) and (b).

Proof of (c)(d)

First, reformulate numerators of (c) and (d) as

(N(t)− 2) log
1

t
− (N(t)− 2) log 6− log((N(t)− 2)!)

= (N(t)− 2) log
1

6tN(t)
+ (N(t)− 2) log N(t)− log((N(t))!) + log(N(t)(N(t)− 1))

= N(t) + (N(t)− 2) log
1

6tN(t)
− log

N(t)!

N(t)N(t)+ 1
2 e−N(t)

− 5

2
log N(t) + log(N(t)(N(t)− 1))

and

(N(t)− 2) log
1

t
− (N(t)− 2) log(2π)− log(N(t)!)

= (N(t)− 2) log
6

2π
+ (N(t)− 2) log

1

t
− (N(t)− 2) log 6− log((N(t))!)

= (N(t)− 2) log
3

π
+ N(t) + (N(t)− 2) log

1

6tN(t)
− log

N(t)!

N(t)N(t)+ 1
2 e−N(t)

− 5

2
log N(t).

Now the estimation

1 < 6tN(t) < 1 + 6t

shows that

lim
t↓0

N(t)

1/t
=

1

6
,

lim
t↓0

log
1

6tN(t)
= 0,

and

lim
t↓0

log N(t)

1/t
= 0.

Moreover, Stirling’s formula

lim
n→∞

n!

nn+ 1
2 e−n

=
√

2π

implies that

lim
t↓0

log N(t)!

N(t)N(t)+ 1
2 e−N(t)

1/t
= 0.

Hence we get (c) and (d).
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5 Proof of Theorem 5

(1) (N1, N2) = 1 case:

Take integers M1, M2 ≥ 1 such that M1N1 −M2N2 = 1. Then

mM1N1 = m + mM2N2

and

S2(mM1N1, (N1, N2)) = S2(m + mM2N2, (N1, N2))

= S2(m + (mM2 − 1)N2, (N1, N2))S1(m + (mM2 − 1)N2, N1)
−1

= S2(m + (mM2 − 1)N2, (N1, N2))S1

(
m + (mM2 − 1)

N1

)−1

with

S1(x) = 2 sin πx.

Hence, inductively we have

S2(mM1N1, (N1, N2)) = S2(m, (N1, N2))

mM2−1∏

l=0

S1

(
m + lN2

N1

)−1

.

Hence we get

S2(m, (N1, N2)) = S2(mM1N1, (N1, N2))

mM2−1∏

l=0

S1

(
m + lN2

N1

)
.

On the other hand

S2(mM1N1, (N1, N2)) = S2((mM−1
1 )N1, (N1, N2))S1((mM1 − 1)N1, N2)

−1

= S2(N1, (N1, N2))

mM1−1∏

k=1

S1

(
kN1

N2

)−1

=

√
N2

N1

mM1−1∏

k=1

S1

(
kN1

N2

)−1

.

Thus

S2(m, (N1, N2)) =

√
N2

N1

mM2−1∏

l=0

S1

(
m + lN2

N1

) mM1−1∏

k=1

S1

(
kN1

N2

)−1

,
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which is an algebraic number in Q
(

sin 2π
Ni

, cos 2π
Ni

,
√

Ni

∣∣∣ i = 1, 2
)
.

(2) (N1, N2) = 2 case:

Since (N1

2
, N2

2
) = 1, the case of even m is reduced to (1) via

S2(m, (N1, N2)) = S2

(
m

2
,

(
N1

2
,
N2

2

))
.

Now let m be an odd integer. Since either N1

2
or N2

2
is odd, we may assume that N1

2
is odd

without the loss of generality. Then, m− N1

2
is even, so we may express

m− N1

2
= k1N1 + k2N2

for integers k1 and k2. Hence the algebraicity of

S2(m, (N1, N2)) = S2

(
N1

2
+ k1N1 + k2N2, (N1, N2)

)

is reduced to

S2

(
N1

2
, (N1, N2)

)
=
√

2

via the (quasi-)periodicity exactly similar to the case (1).

Proof of Examples.: Calculation of S2(m, (4, 6)) for m = 1, 2, ..., 9.

From the reflection relation

S2(ω1 + ω2 − x, (ω1, ω2)) = S2(x, (ω1, ω2))
−1

it is sufficient to deal with the cases with m = 1, ..., 5. First, cases m = 2, 3 are shown from
Theorem 1(2):

S2

(ωi

2
, (ω1, ω2)

)
=
√

2.

Secondly, cases m = 4 and m = 5 are deduced from Theorem 1(4) and (1), respectively:

S2 (ω1, (ω1, ω2)) =

√
ω2

ω1

.
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and

S2

(
ω1 + ω2

2
, (ω1, ω2)

)
= 1.

Lastly, it remains to show the case m = 1. Let x = 1, ω1 = 4, ω2 = 6 in the periodicity

S2(x + ω1, (ω1, ω2)) = S2(x, (ω1, ω2))S1(x, ω2)
−1

= S2(x, (ω1, ω2))

(
2 sin

πx

ω2

)−1

.

Then we have

S2(5, (4, 6)) = S2(1, (4, 6))
(
2 sin

π

6

)−1

= S2(1, (4, 6)).

Hence

S2(1, (4, 6)) = S2(5, (4, 6)) = 1.

6 Proof of Theorem 6

Notice that (1) is seen from

S2(n, (1, 6n)) = S2(n + 1, (1, 6n))

=
√

6n

(
n∏

k=1

2 sin
kπ

6n

)−1

.

Hence, using

k

n
≤ 2 sin

kπ

6n
≤ kπ

3n

for k = 1, ..., n, we have

n!

nn
≤

n∏

k=1

2 sin
kπ

6n
≤

(π

3

)n n!

nn
.

Thus

√
6
nn+ 1

2

n!

(
3

π

)n

≤ S2(n, (1, 6n)) ≤
√

6
nn+ 1

2

n!
.
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So, the asymptotic formula of Stirling

√
6
nn+ 1

2

n!
∼

√
3

π
en

and

√
6
nn+ 1

2

n!

(
3

π

)n

∼
√

3

π

(
3e

π

)n

give (2) and (3).
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