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Abstract

Mean values of Witten L-functions in the “character” aspect are inves-
tigated. After giving a general formula for mean values with the first and
the second power, we explicitly calculate the cubic moment for SU(2).
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1 Introduction

Study of mean values of zeta functions is one of central subjects in number
theory. The most frequently investigated problem would be the case for the
mean value of the 2k-th power of zeta functions in the t-aspect along the critical
line (the 2k-th moment). For instance, much work has been done towards the
conjectural asymptotic for the Riemann zeta function ζ(s):

1

2T

∫ T

−T

ζ

(
1

2
+ it

)2k

dt ∼ ck(log T )
k2

(T → ∞). (1.1)

Analogous problems exist for various zeta functions for more general s ∈ C in
more general aspects.

We find a tendency that the higher k is, the more difficult the problem is.
For example, the value ck in (1.1) as well as its proof is known only for k =
1, 2, which are classical results by Hardy-Littlewood [8] and Ingham [9]. The
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conjectural values of ck are known only for k = 3, 4 ([3] [4]). A general form
of ck is proposed by Keating-Snaith [10] and Brezin-Hikami [2] under assuming
the analogy between ζ(s) and the characteristic polynomial of random matrices.

We also observe that any odd power moment is very hard to treat. As far as
the authors know, the only successful case where the cubic moment was studied
is the work by Conrey and Iwaniec [5].

The goal of this paper is to deal with the mean values of the third power of
Witten L-functions in the “character” aspect in Re(s) > 0. For a compact
semisimple Lie group G, Witten ([17]) defined a zeta function from the partition
function of a quantum system as follows:

ζG(s) =
∑
ρ∈Ĝ

(dim ρ)−s, (1.2)

where Ĝ denotes the set of equivalence classes of irreducible unitary representa-
tions of G. It is known that (1.2) is absolutely convergent if Re(s) is sufficiently
large ([1],[12]), and that ζG(s) is meromorphic in s ∈ C.

In case of G = SU(2), it holds that

Ĝ = {Symn−1 |n = 1, 2, 3, ...},

where Symn−1 is the n-dimensional symmetric power representation defined by

Symn−1 : SU(2) ∋ g 7−→


αn−1

αn−2β
. . .

βn−1

 ∈ GL(n,C)

with α and β being the eigenvalues of g. Hence

ζSU(2)(s) =
∞∑

n=1

n−s = ζ(s).

In this sense the Witten zeta function is a generalization (a deformation) of the
Riemann zeta function.

We also define the Witten L-functions after Kurokawa-Ochiai [11] by attaching

“characters” which suitably twist ρ ∈ Ĝ. Any fixed element g ∈ G plays the
role. Namely, we regard the following map as a “character” of Ĝ:

g : Ĝ ∋ ρ 7−→ tr(ρ(g))

deg ρ
∈ C.

Here 1
deg ρ is a normalization factor so that g(ρ) = 1 for the unit element g ∈ G.

In this manner the Witten L-function of G with a twist given by g ∈ G is defined
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by

ζG(s, g) =
∑
ρ∈Ĝ

tr(ρ(g))

deg ρ
(deg ρ)−s. (1.3)

This is also absolutely convergent for s ∈ C with Re(s) sufficiently large. It is
easy to see that ζG(s, g) depends only on the conjugacy class of g in G.

The chief concern in this paper is to study the mean values

Zm
G (s) :=

∫
G

ζG(s, g)
mdg (1.4)

with dg the normalized Haar measure of G. Such a problem was first studied
in [11] §2.8. Here Zm

G (s) means the meromorphic continuation of the defining
integral (1.4). We will note in Remark (2) in §2 that it generally differs from
the integral of the meromorphic continuation of ζG(s, g)

m.

In the next section we study (1.4) for m = 1, 2 and Re(s) > 1. In the final
section we specialize the group as G = SU(2), and calculate (1.4) for m = 3.
We also show that the function Z3

SU(2)(s) is meromorphic in s ∈ C.

2 Preliminary results

Proposition 2.1 (The mean value: the first power moment). For any compact
semisimple Lie group G, it holds that Z1

G(s) = 1.

Proof. Let Re(s) be large enough so that the series (1.3) is absolutely convergent.
Then ∫

G

ζG(s, g)dg =

∫
G

∑
ρ∈Ĝ

tr(ρ(g))

deg ρ
(deg ρ)−sdg

=
∑
ρ∈Ĝ

1

(deg ρ)s+1

∫
G

tr(ρ(g))dg. (2.1)

Here we appeal to the orthogonal relation of characters. For any ρ, ρ′ ∈ Ĝ, it
holds that ∫

G

tr(ρ(g))tr(ρ′(g))dg =

{
1 (ρ = ρ′)

0 (otherwise).
(2.2)

Putting ρ′ to be the identity representation, we find that∫
G

tr(ρ(g))dg =

{
1 (ρ = 1)

0 (otherwise).

Hence all terms in the sum in (2.1) are zero except for ρ = 1. The proposition
follows from the uniqueness of the analytic continuation.
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Remark. (1) The assumption on Re(s) is necessary. Indeed from the known
fact that ζSU(2)(−2, g) = 0 for all g ∈ SU(2) ([11] Theorem1), we obviously
see that

∫
SU(2)

ζ(−2, g)dg = 0. We also refer to [6] on vanishing of Witten

zeta functions at s = −2 for the compact p-adic Lie groups. (See also [14],
[16] for some generalizations.)

(2) The preceding remark shows that a meromorphic continuation of (1.4) is dif-
ferent from the integral of the meromorphically continued ζG(s, g)

m. Thus
analyticity of Zm

G (s) is nontrivial, in the sense that it is not an immediate
consequence from that of ζG(s, g).

In the next proposition we assume that the group G satisfies the following
condition:

tr(ρ(g)) ∈ R (∀ρ ∈ Ĝ, ∀g ∈ G). (∗)

The special unitary group G = SU(2) is an example of such G, as shown in
Proposition 3.1 below.

Proposition 2.2 (The double mean value: the square moment). For any com-
pact semisimple Lie group G satisfying the condition (∗), it holds that

Z2
G(s) :=

∫
G

ζG(s, g)
2dg = ζG(2s+ 2),

where Re(s) is sufficiently large.

Proof. Let Re(s) be large enough so that the series (1.3) is absolutely convergent.
Then∫

G

ζG(s, g)
2dg =

∫
G

∑
ρ1,ρ2∈Ĝ

tr(ρ1(g)) tr(ρ2(g))

(deg ρ1)s+1(deg ρ2)s+1
dg

=
∑

ρ1,ρ2∈Ĝ

1

(deg ρ1)s+1(deg ρ2)s+1

∫
G

tr(ρ1(g)) tr(ρ2(g))dg.

By the orthogonal relation (2.2), all terms in the sum are zero except for ρ1 = ρ2.
Therefore if we put ρ1 = ρ2 = ρ, it holds that∫

G

ζG(s, g)
2dg =

∑
ρ∈Ĝ

1

(deg ρ)2s+2
= ζG(2s+ 2).

When G is a finite group, we have

Zm
G (s) =

1

|G|
∑
g∈G

ζG(s, g)
m.
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The following proposition is an example of calculation of mean values for general
m ≥ 1.

Proposition 2.3 (Mean values Zm
S3
(s)). Let G = S3 be the symmetric group of

degree 3. Then it holds that

Zm
S3
(s) =

(2 + 2−s)m + 2(2− 2−s−1)m

6
.

Especially,

Z1
S3
(s) = 1,

Z2
S3
(s) = 2 + 2−2s−2 = ζS3(2s+ 2).

Proof. The Witten L-function ζG(s, g) depends only on the conjugacy class
of g. Conjugacy classes of symmetric groups are classified by the cycle type.
The elements in S3 consist of two cyclic permutations of order three, three
transpositions of order two, and the identity. Hence

Zm
S3
(s) =

1

6
(2ζS3

(s, (1 2 3))m + 3ζS3
(s, (1 2))m + ζS3

(s, (1))m) .

Now we will calculate ζS3(s, g) for each g ∈ S3. We have Ŝ3 = {ρ1, ρ2, ρ3} with
ρ1 the trivial representation, ρ2 the signature, and ρ3 the unique two dimensional
irreducible representation defined by

ρ3((1 2)) =

(
0 1
1 0

)
, ρ3((1 2 3)) =

(
e

2
3πi 0

0 e−
2
3πi

)
,

whose traces are 0 and −1, respectively. Then each L-function is given by

ζS3(s, (1)) = 1 + 1 +
2

21+s
= 2 + 2−s,

ζS3(s, (1 2)) = 1− 1 + 0 · 2−s = 0,

ζS3(s, (1 2 3)) = 1 + 1 +
−1

21+s
= 2− 2−s−1.

Therefore we get the conclusion.

The characters attached to Witten L-functions are generalized to convolutions
of m times of twists (m = 1, 2, 3, ...):

ζG(s, (g1, ..., gm)) =
∑
ρ∈Ĝ

tr(ρ(g1)) · · · tr(ρ(gm))

(deg ρ)s+m
.

We can consider another type of mean values as

Z̃m
G (s) :=

∫
G

ζG(s, (g, ..., g︸ ︷︷ ︸
m

))dg =

∫
G

∑
ρ∈Ĝ

(tr(ρ(g)))m

(deg ρ)s+m
dg. (2.3)

This is calculated for G = S3 in the following proposition.
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Proposition 2.4. Let S3 be the symmetric group of degree 3. Then it holds
that

Z̃m
S3
(s) =

∫
S3

ζS3(s, (g, ..., g︸ ︷︷ ︸
m

))dg =
3 + (−1)m

2
+

2−1 + (−1)m

3
· 2−s−m.

Proof. We again use the classification of the conjugacy classes of S3 and the
explicit form of elements in Ŝ3 given in the proof of the preceding proposition.
It holds that∫

S3

ζS3(s, (g, ..., g︸ ︷︷ ︸
m

))dg

=
1

6

∑
ρ∈Ŝ3

(
2 tr(ρ(1 2 3))m

(deg ρ)s+m
+

3 tr(ρ(1 2))m

(deg ρ)s+m
+

1

(deg ρ)s+m

)

=
1

6

2 + 3 + 1︸ ︷︷ ︸
ρ1

+2 + 3(−1)m + 1︸ ︷︷ ︸
ρ2

+
2(−1)m

2s+m
+

3 · 0
2s+m

+
1

2s+m︸ ︷︷ ︸
ρ3


=

3 + (−1)m

2
+

2−1 + (−1)m

3
2−s−m.

3 Triple mean values: the cubic moment

Proposition 3.1. The group G = SU(2) satisfies the condition (∗).

Proof. We put the eigenvalues of g ∈ SU(2) as e±iθ. The conjugacy classes of
G = SU(2) are parametrized by θ ∈ [0, π]. Since the Witten L-function depends
only on the conjugacy class of g ∈ G, we denote ζG(s, g) = ζG(s, [θ]). Then we
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compute

tr(Symn−1(g)) = tr

(
Symn−1

((
eiθ

e−iθ

)))

= tr


ei(n−1)θ

ei(n−3)θ

. . .

e−i(n−1)θ



=


n (θ = 0)
sin(nθ)

sin θ
(0 < θ < π)

(−1)n−1n (θ = π).

(3.1)

From (3.1) we obtain the following corollary immediately.

Corollary 3.2 (The explicit form of ζSU(2)(s, [θ])). We have in Re(s) > 1 that

ζSU(2)(s, [θ]) =



ζ(s) (θ = 0)
∞∑

n=1

sin(nθ)

sin θ
n−s−1 (0 < θ < π)

∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s) (θ = π).

Here the second expression is absolutely convergent by the rough estimate
sin(nθ)/ sin θ = O(n) as n → ∞ (see, for example, [7] 1.331.1).

Before calculationg the triple mean value, we are introducing preliminary cal-
culations which are good for general m. For G = SU(2) and Re(s) > 1, we
compute by putting ρj = Symnj−1 that∫

G

ζG(s, g)
mdg

=
∑

ρ1,...,ρm∈Ĝ

1

((deg ρ1) · · · (deg ρm))s+1

∫
G

tr(ρ1(g)) · · · tr(ρm(g))dg

=
∑

n1,...,nm≥1

1

(n1 · · ·nm)s+1

∫
G

tr(Symn1−1(g)) · · · tr(Symnm−1(g))dg.

The last integrand depends only on the conjugacy class of g. We use the notation
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[θ] defined in the proof of Proposition 3.1. Then the last integral equals by (3.1)∫ π

0

tr
(
Symn1−1([θ])

)
· · · tr

(
Symnm−1([θ])

) 2

π
sin2 θdθ

=

∫ π

0

sin(n1θ)

sin θ
· · · sin(nmθ)

sin θ

2

π
sin2 θdθ

=
2

π

∫ π

0

sin(n1θ) · · · sin(nmθ)

sinm−2 θ
dθ. (3.2)

Putting it by c(n1, ..., nm), we have for Re(s) > 1 that

Zm
G (s) :=

∫
G

ζG(s, g)
mdg =

∑
n1,...,nm≥1

c(n1, ..., nm)

(n1 · · ·nm)s+1
. (3.3)

Theorem 3.3 (Triple mean values: the cubic moment). It holds for G = SU(2)
in Re(s) > 0 that

Z3
G(s) :=

∫
G

ζG(s, g)
3dg

=
∑

m1,m2,m3≥0

((m1 +m2 + 1)(m2 +m3 + 1)(m3 +m1 + 1))
−s−1

.

(3.4)

This function is meromorphically continued to all s ∈ C.

Proof. We compute (3.3) for m = 3. We first calculate the case Re(s) > 1,
where the expression in Corollary 3.2 is valid. By transforming the product of
the sine function into sums, we have

c(n1, n2, n3)

=
2

π

∫ π

0

sin(n1θ) sin(n2θ) sin(n3θ)

sin θ
dθ

=
1

2π

∫ π

0

(
sin((n1 + n2 − n3)θ)

sin θ
+

sin((n2 + n3 − n1)θ)

sin θ

+
sin((n3 + n1 − n2)θ)

sin θ
− sin((n1 + n2 + n3)θ)

sin θ

)
dθ

=
A(n1 + n2 − n3) +A(n2 + n3 − n1) +A(n3 + n1 − n2)−A(n1 + n2 + n3)

2
(3.5)

with

A(n) :=
1

π

∫ π

0

sin(nθ)

sin θ
dθ.
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We first compute A(n) for n ≥ 1. It holds that

A(n) =
1

π

∫ π

0

einθ − e−inθ

eiθ − e−iθ
dθ

=
1

π

∫ π

0

(
ei(n−1)θ + ei(n−3)θ + · · ·+ e−i(n−1)θ

)
dθ

=

{
1 (n : odd)

0 (n : even),

because the integrand contains the constant term “1” if and only if n is odd,
which contribute 1 to A(n), and the integral vanishes for all other terms. Since
A(n) is an odd function in n, we eventually have for n ∈ Z that

A(n) =

{
sgn(n) (n : odd)

0 (n : even).

Next we calculate (3.5). When n1+n2+n3 is even, all of n1+n2−n3, n2+n3−n1

and n3+n1−n2 are even, and thus c(n1, n2, n3) = 0. Assume that n1+n2+n3

is odd. Then all of n1 + n2 − n3, n2 + n3 − n1 and n3 + n1 − n2 are odd, and

c(n1, n2, n3) =
sgn(n1 + n2 − n3) + sgn(n2 + n3 − n1) + sgn(n3 + n1 − n2)− 1

2
.

Here we put the following condition as (∗∗):

All of n1 + n2 − n3, n2 + n3 − n1 and n3 + n1 − n2 are positive,

and n1 + n2 + n3 is odd. (∗∗)

When the triple (n1, n2, n3) satisfies (∗∗), we have c(n1, n2, n3) = 1. Assume
that the triple (n1, n2, n3) does not satisfy (∗∗). Then it is easy to see that only
one of n1 + n2 − n3, n2 + n3 − n1 and n3 + n1 − n2 is negative or zero. But
it cannot be zero, because it is odd by assumption. So one of n1 + n2 − n3,
n2+n3−n1 and n3+n1−n2 is negative, and the other two are positive. Hence
we conclude that c(n1, n2, n3) =

1+1−1−1
2 = 0, when the triple (n1, n2, n3) does

not satisfy (∗∗). Therefore we successfully have the final form of the coefficients
as

c(n1, n2, n3) =

{
1 (∗∗)
0 (otherwise).

(3.6)

By (3.3) the triple mean value is

Z3
G(s) =

∫
G

ζG(s, g)
3dg =

∑
n1,n2,n3≥1

(∗∗)

1

(n1n2n3)s+1
. (3.7)
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Next we will see that the right hand side of (3.7) is absolutely convergent in
Re(s) > 0. It is easy once we notice that its absolute value is O

(
ζ(Re(s) + 1)3

)
.

Therefore Z3
G(s) is analytically continued to Re(s) > 0 by (3.7).

In what follows we rewrite (3.7) to a simpler form. Put

m3 :=
n1 + n2 − n3 − 1

2
, m1 :=

n2 + n3 − n1 − 1

2
, m2 :=

n3 + n1 − n2 − 1

2
.

Then there is one-to-one correspondence between the set of all triples (n1, n2, n3)
with (∗∗) and the set of all triples (m1,m2,m3) ∈ (Z≥0)

3. The inverse corre-
spondence

n1 = m2 +m3 − 1, n2 = m3 +m1 − 1, n3 = m1 +m2 − 1

leads to the conclusion.

The meromorphic continuation was generally shown by Mellin [13].

By this theorem the first few terms of Z3
G(s) turns to be as follows:

Z3
G(s) = 1 +

3

4s
+

3

9s
+

3

12s
+

3

16s
+

6

24s
+

3

25s
+

1

27s
+ · · · .

We can also compute the other type (2.3) of triple mean value for G = SU(2)
and m = 3.

Theorem 3.4. It holds for Re(s) > −2 that

Z̃3
SU(2)(s) =

∫
SU(2)

ζSU(2)(s, (g, g, g))dg = (1− 2−s−3)ζ(s+ 3).

In particular, the function Z̃3
SU(2)(s) is meromorphic on C.

Proof. We compute∫
SU(2)

ζSU(2)(s, (g, g, g))dg =
∞∑

n=1

1

ns+3

∫ π

0

(
sinnθ

sin θ

)3
2

π
sin2 θdθ

=

∞∑
n=1

c(n, n, n)

ns+3
, (3.8)

where c(n1, n2, n3) is defined by (3.2). By applying (3.6) with m = 3 and
n1 = n2 = n3, we find that

c(n, n, n) =

{
1 (n : odd)

0 (otherwise).
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Then (3.8) is absolutely convergent in Re(s) > −2 and it holds that∫
SU(2)

ζSU(2)(s, (g, g, g))dg =
∑
n≥1
odd

1

ns+3
= (1− 2−s−3)ζ(s+ 3).

Remark (Quadruple case). The case of m = 4 is also calculated as follows.
Starting from the identity

Z̃4
SU(2)(s) =

∫
SU(2)

ζSU(2)(s, (g, g, g, g))dg

=
∞∑

n=1

1

ns+4

∫ π

0

(
sinnθ

sin θ

)4
2

π
sin2 θdθ

=
∞∑

n=1

1

ns+4
· 2
π

∫ π

0

sin4 nθ

sin2 θ
dθ,

the last integral is calculated as follows

2

π

∫ π

0

sin4 nθ

sin2 θ
dθ

=
−1

2π

∫ π

0

(
einθ − e−inθ

eiθ − e−iθ
(einθ − e−inθ)

)2

dθ

=
−1

2π

∫ π

0

(
(ei(n−1)θ + ei(n−3)θ + · · ·+ e−i(n−1)θ)(einθ − e−inθ)

)2

dθ

=
−1

2π

∫ π

0

(
(ei(2n−1)θ + ei(2n−3)θ + · · ·+ eiθ)− (e−iθ + e−3iθ + · · ·+ e−i(2n−1)θ)

)2

dθ

=
−1

2π

∫ π

0

(−2n+ [nonconstant terms])dθ = n.

For the nonconstant terms are written as a linear combination of

eiNθ + e−iNθ = 2 cos(Nθ) (N ∈ Z \ {0}),

whose integral vanishes as∫ π

0

cos(Nθ)dθ = 0 (∀N ∈ Z \ {0}).

Therefore we conclude that

Z̃4
SU(2)(s) =

∞∑
n=1

1

ns+4
· n = ζ(s+ 3). (3.9)

This is valid for Re(s) > −2, and it shows that Z̃4
SU(2)(s) has an analytic

continuation to the entire plane except for a simple pole at s = −2.
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We can directly calculate that
∫
SU(2)

ζSU(2)(−2, (g, g, g, g))dg = ∞ by using the

result of Min [14] on the values ζSU(2)(−2, (g, g, g, g)). This happens to agree

to our conclusion (3.9) that Z̃4
SU(2)(s) has a pole at s = −2. Although the

problems are different as noted in Remark (2) after Proposition 2.1, reasoning
of this coincidence may be an interesting problem for future study.

4 Generalizations

Let G be as above, and H be a subgroup of G. Mean values are generalized to
the average over H as

Zm
G,H(s) :=

∫
H

ζG(s, h)
mdh

and

Z̃m
G,H(s) :=

∫
H

ζG(s, (h, ..., h︸ ︷︷ ︸
m

))dh.

It is easy to see that Zm
G,{1}(s) = ζG(s)

m and Zm
G,G(s) = Zm

G (s).

Theorem 4.1. Let G and H be a pair of compact semisimple Lie groups such
that G = H × · · · ×H︸ ︷︷ ︸

m

. We regard H as a subgroup of G by diagonal embedding.

Then the following identities hold.

(1) ζG(s, (h, ..., h︸ ︷︷ ︸
m

)) = ζH(s, h)m.

(2) Z̃m
G,H(s) = Zm

H (s).

Proof. (1) The map

Ĥ × · · · × Ĥ︸ ︷︷ ︸
m

∋ (ρ1, ..., ρm) 7−→ ρ1 � · · ·� ρm ∈ Ĝ

defined by

(ρ1 � · · ·� ρm)(h1, ..., hm) := ρ1(h1)⊗ · · · ⊗ ρm(hm)

is an isomorphism. It also holds that

deg(ρ1 � · · ·� ρm) = (deg ρ1) · · · (deg ρm).
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Hence

ζG(s, (h, ..., h︸ ︷︷ ︸
m

)) =
∑
ρ∈Ĝ

tr(ρ(h, ..., h))

(deg ρ)s+1

=
∑

ρ1,...,ρm∈Ĥ

tr(ρ1(h)) · · · tr(ρm(h))

((deg ρ1) · · · (deg ρm))s+1

=

∑
ρ∈Ĥ

tr(ρ(h))

(deg ρ)s+1

m

= ζH(s, h)m.

(2) By (1), we have

Z̃m
G,H(s) =

∫
H

ζG(s, (h, ..., h︸ ︷︷ ︸
m

))dh =

∫
H

ζH(s, h)mdh = Zm
H (s).

By Theorem 3.3, the following theorem is immediate.

Theorem 4.2. Put G = SU(2) × SU(2) × SU(2), and let H = SU(2) be a

subgroup of G embedded diagonally. Then Z̃3
G,H(s) is explicitly expressed by the

Dirichlet series (3.4) in Re(s) > 0, and has a meromorphic continuation to the
whole plane C.
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