Absolute Modular Forms
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Abstract. We describe examples of absolute modular forms coming from differentiations of
multiple sine functions. We give an identity in weight 3 indicating the graded structure.
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1 Introduction

The absolute modular form is a new kind of modular forms. We say that a (holomorphic)
function f on

D, = {(m,... ) eCr |t and 1 belong to one Side}

with respect to a line crossing 0
is an absolute modular form of weight k if it satisfies the following two conditions:
(1) f(ug,---,u,) is symmetric,
(2) fGri2, ) = uif(un,un, ).
The Eisenstein series
er(ug, -, u,) = Z (nyuy + -+ ety +nppq) " (k>r+1) (1.1)
e 1 >0

is a typical example, which is analogous to the classical modular forms. A strict difference
is that the sum is taken over a semi-lattice here, while the classical sum was taken over a
whole lattice.

We notice the shapes of D, for r = 1,2 as

Di=C—-Ry={ueC| —m<arg(u) <}

and
Dy = {(u,v) € D} | — 7 < arg(u) — arg(v) < 7}.
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The absolute modular form is also called the Stirling modular form, since it was originated
in an old paper of Barnes [B] (p.397), where a function p,(wy, - -+ ,w,) was called an “absolute
modular form” associated to the multiple gamma function (the name “absolute” is coming
from the Stirling (asymptotic) formula for n! as n — oo) (cf. [K3, K4, K5, KK3, Kol): we
refer to [KOW] and [CCM] for mathematics over F;. The absolute modula form is a function
of the semi-lattice

Zsowy + -+ Zsow,.

The absolute modular group is identified as
GLT(Fl) = ST = Aut(ZZOwl + -+ Zzou)r).
From this original viewpoint, we may call a function F' on

D, = {(wl,--- ,wy) € C" w1, ,w, belong to one side }

with respect to a line crossing 0

as an absolute modular form if it satisfies the following two conditions

(1) F(wy,- -+ ,w,) is symmetric,

(2) F(wy, -+ ,w,) is homogeneous of degree —k: F(cwy, - ,cw,) = ¢ *F(wy,--- ,w,) for
ce C\ {0}.

We remark that p,(wi,---w,) is a complicated function and it is rather difficult to make

a general theory containing it. For example, p,(wq,--- ,w,) satisfies (1) above, but unfor-

tunately we need a homogeneous function k& = k(w,- - ,w,) for (2). So we do not treat

pr(wi, -+ ,w,) directly in this paper. (But, see Theorem 6 below.)

It is useful to compare the situation with the case of ordinary modular forms which
are considered to be functions of the lattice Zw; + Zwsy. In that case we usually regard
such functions as functions in 7 = wy/w; on the upper (or lower) half plane to simplify the
treatment. Here the modular group is obtained as

GLy(Z) = Aut(Zw, + Zw,).
Similarly we associate a function f: D, — C to F': D,,; — C under
f(uh"' 7u7’) = F(ulv"' 7u7"a]-)

and

—k w1 w
F(wl’...’wr+1):wr+1f< R 7‘)'

Wr1 7 Wr41
It is easy to see that the conditions (1)(2) on f and F' are equivalent under this correspon-
dence.
Thus, hereafter we deal with functions f on D, of weight k& > 0. (Of course it is advisable
to keep in mind the functions F on D, as well.) In this paper we pick up two constructions:
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(a) Flug, - u) = SE0, (ug, -+, up, 1)) for k> 0.
(b) ex(ur, -+ yup) = Goor(k, (ur, - ur, 1)) for k > 0,

Here, S,(z, (w1, - ,w,)) is the multiple sine function defined as

(-
Sp(@, (i, w) = [ (mwit - +nw+) ( I e+ +muw, - I))

ni, - ,nr2>0 mi,,me2>1

with the regularized product notation H due to Deninger [D]:

d —5
g)\:exp<—£;/\ )
s=0

Using the multiple gamma function
~1
FT(.ZU,((UI,"' )WT)) = ( H (n1w1+"'+nrwr+x)>

ni, - ,ner>0

we can express the multiple sine function as
Sr(x’ (wh v ’wr>) — Fr(x’ (wl’ e 7wr>)71FT(W1 4+ 4 Wy — T, (wh Ce ’wr))(*l)r.

We refer to [K1] [K2] [KK1] for a theory of multiple sine functions; see Manin [M] for an
excellent survey.

The other notation (.(s, (w1, - ,w,)) is a kind of multiple version of the Riemann (or
Hurwitz) zeta function

)

G(sy (W, ywyp)) = Z (nywy + -+ + npw,) .

ni, e 20

We remark that ey (uq, - ,u,), which is given by (1.1) for k£ > r 4 1, is defined by the ana-

lytically continued ¢, (k, (uq, -+ ,u,, 1)) for k£ < r+ 1. Hence, we can consider eg(uy, - ,u,)
for example.
We find a neat expression (not mentioned in [B]) for p,(wq, -+ ,w;):
,Or(wlv... 7wr) = H7 (nlwl_‘_"'_‘_n’r’wr)
ny,,ne>0

= exp(—¢(0, (w1, ,wr)))-

Hereafter, it would be suggestive to regard e, and . as “(generalized) Eisenstein series”
and “cusp forms,” respectively. The present state of our experience on absolute modular
forms is primitive, so we must postpone developing the general theory to future papers.
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We also remark that the Kronecker’s Jugendtraum gives a strong motivation for studying
absolute modular forms and absolute modular functions. It is a famous problem to construct
abelian extensions (class fields) of an algebraic number field via division values of a suitable
function. The studies in the rational number case (Kronecker) and the real quadratic field

case (Shintani [S]) suggest looking at the extension Q (S, (LEcte (wy, -+ ,w,)) ,wi, - ,w;)
over Q(wi, -+ ,w,;). This function S, (44 (wy, -+ w,)) on D, (or the function
Syt (WT*“”“, (ug, -, Uy, 1)) on D,) is a typical absolute modular function (or an ab-

solute modular form of weight 0).
In this paper we calculate .} and ej, to some extent in the one-variable case with a remark
made on the two-variable case. The following four theorems concern the one-variable case.

Theorem 1

Theorem 2

Vi \u
F(u) =
_8% GE (%) _ El(—u)> i m(u) <0,
where By(r) = — i N nf; d(n)e2inT

for Im(7) > 0 with d(n) =3, 1.

Theorem 3

Theorem 4 3 3
F(u) = Z&@(u)zyl(u)_l - §(4eo(u) + 3).7 (u)®.

Among others, Theorem 2 shows an unexpected relation in weight 2 using to an Eisenstein-
like series of weight 1; remark that 1/4/u is of weight 1 as in Theorem 1. The identity in
Theorem 4 is indicating a graded structure in weight 3. Our proof shows that this identity
is coming from the (quasi-)modularity of



with

Here we are using the notation

with
op_1(n) = de_l.
dln

In this paper we do not treat the “cuspidality.” We think that the cuspidality of .7 (u)
means that .#;(0c0) = 0 at now. This vanishing is obvious for . (u) from Theorem 1. It is
not so difficult to show #(+ico) = 0 and .3(%i00) = 0 from Theorem 2 and Theorem 4,
respectively. We hope to report on them in a future paper.

Our results have some applications. For example, from Theorem 2 and .%5(1) = —47 we

see that:
1 1
T—1 T 211
Im(7)>0

This indicates a merit of absolute modular forms, where the domain D; contains the positive
real numbers R (See Figure 1). We refer to [K3] [KK3] for related results.
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Corollary 1

Figure 1. The domain D,
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Lastly we notice calculations in the two-variable case:

Theorem 5 .

60(71/, U) 24

1 1
(u+ +ot -+ +——21)

Theorem 6
_ pg(u,v,l)Qp( ) ( )p1(1>
A = el ol 1)
(2#)% p3(u,v,1)?

\/m . p2(u7 U>p2(u= 1)p2(v, 1)
2 Proofs of Theorems 1 and 2

Since we have seen these results in other contexts essentially (see [K2] for example), we give
concise proofs here.

Proof of Theorem 1:
It is sufficient to show that

The periodicity proved in [KK1]
Sa(x, (W1, w2)) = S2( + wa, (w1, w2))S1(z, wr)

with .
S1(z,w) = 2sin <—)
w

implies



Here,

Dy (wi, (w1, w2))

Ly (wg, (w1, w2))
(w1 + z, (w1, wn))
(wo + , (Wr,w2))

— lim Do(x, (w1, ws))Ty(z,we) ™"
(
(

Sy(wa, (w1, w2)) =

=0 y(x, (w1, wa) )T (2, wp) !
x7w1)

Thus

Proof of Theorem 2:
A formula of Shintani [S] (Proposition 5) shows that

Cota(r, (1,7)) = i G - (1 ! 9)

0o 0 O o o0
. : . _ 2minm 2mimz
— 9 2 E 627rmm7'62mmx + E 2 e e T,
T

n=0 m=1 n=1 m=1
where we use the double cotangent function

Cota(z, (1,u)) = Sa(z, (1, u))

B SQ(fL‘,(l,U))
Hence
ﬂ-Z 1 . > > QminmT 27TZ > > __2minm

_ %Z (1 - %) — 2mi (El(T) + i) + ? (E1 (_%) * i)



Now we prove that

S5(0,(1,7)) = %COtQ(T, (1,7)).

This is obtained from the periodicity
So(z, (1,7)) = Se(z + 7, (1,7))S1(x)
with S;(z) = 2sin(7x). In fact, differentiating this periodicity relation twice leads to
Sy(x,(1,7)) = SY(z+7,(1,7))S1(x) + 2S5(x + 7, (1,7))S1(z) + Sa(z + 7, (1,7))S7 ().
Hence, we obtain the desired relation

Sg(ov (17 T)) = 235(77 (1v T))Si(())

)
f Sao(T, (1,7))

where we used the fact

proved in [KK2]. Thus we have

‘56(7_) = Sg(oa (17 )

2 1 (-2) o).

This proves Theorem 2 for Im(u) > 0. The case Im(u) < 0 is given by the reflection. 1

3 Proof of Theorem 3

We prove that
w2

a0, (wre) = 5 (242 =),

W2

For this we recall the Riemann-Mellin type integral expression for (5(s, (w1, ws)) (cf. Barnes
[B]). It says that
1

o, (@1,02)) = 5 /0 T ot



in Re(s) > 2 with

)

@(t) _ Z e~ (niwi+naws)t

n1,m2>0
1
(1 — e twr)(1 — etwz)
efvr 4 etz 1
(e = D)(et 1)’

Let u a
@(t):t;f+%+ao+a1t+---

be the Laurent expansion around ¢t = 0. An easy calculation shows that

1 1 1 1 1 (09)) w1
ay=—0r) a1 =s(—+—], aw=—(—+—-9).
W19 2 w1 (03)) ].2 w1 )]

Now, to make an analytic continuation of (o(s, (w1,ws)) in Re(s) > —1 we split the integral
into three parts:

lsvlonn)) = i [ O+ o [ (060 - 52 - —an) -la

1 ! a_9 a_q 1
— — + — 57 dt.
+F(s)/0 <t2 5 +“0>

Here, the first term is holomorphic for all s € C since the integral is absolutely convergent.
The second term is holomorphic in Re(s) > —1 since

as t — 0. The third term is

1 a_9 a_1 ag
+ + =
I'(s) (s -2 s—1 s)’
which is meromorphic in s € C. Hence, the above expression gives an analytic continuation

of (a(s, (wi,ws)) in Re(s) > —1. Moreover this calculation shows that (a(s, (wy,ws)) is
holomorphic at s = 0 and its value is given by (5(0, (w1, ws)) = ag. Thus

G0, (wr, ) = — (“’— L 9) |

N E w1 [0%))



4 Proof of Theorem 4
We prove the following facts (a)(b):

(a)

S0, (1,7)) = 6—\/7; (Cotg(ﬂ (1,7)) + Coty(7, (1,7))* — %) 7

(b) 7r2 1
Coty(T, (1,7)) = ry (1 - §> :
Before proving (a) and (b) we show that Theorem 4 follows from them. In fact (a) says that
Ss(r) = 55(0,(1,7))

= 6—7TCot’2(T, (1,7)) + 6—7T00t2(77 (L,7)* ===
T

v V7 v

so using (b) and the formula

COt2(7—7 (17 T)) = Esg(ov (1’ T))

proved in §2, we have

3

Ss(1) =

S

N
N TN
|
Ll e
~——
+
‘oo
<
X
=)
e
|
[\}
E
w

5 () 4(3)

()3 (12e0(7) +9) + Zﬁﬁ(r)ﬂ%(r)?

| — oo —

This is Theorem 4.

Proof of (a):
The definition

implies




Hence

, LS (S L)Y
Cota(m (1.7) = sz<r,<1,r>>‘<sz<r, ,T>>)
_ Sg(Tu(l?T))_ oto(T T 2
" S )

Now we show that
SU(r, (1,7)) = — (S;"(o, (1,7)) + 2—”3) .
67 NG

We obtain this by differentiating the periodicity relation

Sa(z, (1,7)) = Sa(x + 7, (1,7))S1(x)
three times at © = 0. In fact the identity

Sy'(x, (1,7)) = Sy (x+7,(1,7))S1(x) +3S5(x +7,(1,7))S] ()
+3S5(x + 7, (1,7))S] (z) + So(x + 7, (1, 7)) ST ()

gives

SY0,(1,7)) = 67Sy(r,(1,7)) — 27°Sy(r, (1,7))

(.1
_ 67rsg(r,(1,7))—2%

since Sy (z) = 2sin(rz) and So(7, (1,7)) = —=. Thus
2
Coty(T,(1,7)) = ﬁS;"(O, (1,7)) + % — Coty(r, (1,7))>.
This gives (a).

Proof of (b):

We use the method of the proof of Theorem 2. In this case we start from

. o0 oo o0 oo
! X 2 2winmT 27wima 47T2 —2minm 2mimz
Cothy(z, (1,7)) = —+4n E E me e - — E E me T e T .
T T

n=0 m=1 n=1 m=1

Then we have

n=1m=1 n=1 m=1

™ 1 472 1 1
= —t+47*(E — - (B -2 )+ =
7_+7r(2(7)+24) 7_2<2( 7_)—1—24)
1 1 m 1
_ 2
= 471’ (EQ(T)_§E2<_;))+?+E<1_§)



where we used the modularity of Fs(7):

This proves (b). 1
Remark Similar calculations show that
15

D 15 1
S5 = 55”45”25”1_1 - Ey;yfg + E(‘L@O +3).55 + @(1446(2) +216¢q + 89).77.

5 Proof of Corollary 1

lim <E1 (—%)—TE1(7)> = A

Theorem 2 implies

Tm(r)>0
= SH0,(1,1)
and Theorem 4(1) of [K2] says that
S5(0,(1,1)) = —4r.
Hence we get Corollary 1. 1

6 Proof of Theorem 5

We calculate (3(0, (w1, ws,ws)). Exactly similarly to the case of (5(0, (wy,ws)) treated in §3
we have

C3(0, (W17w27w3)) = Qg = aO(W17W2>W3>

where ag is the constant term of the Laurent expansion of

1
@(t) = (1 _ e‘twl)(l _ e—tw2)(1 — e—th) -1

around ¢ = 0: a a a
O) = —2 1+ 222 L =L gt
() 5t T tatatt

The direct calculation shows that
2 2 2 2 2 2, — 91
| WiWh F waws + wawi + Wiws + wiws + wiw W1Waws

ag = .
24(4}1&)2&)3
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Hence

eo(u,v) = g3(07(uava1))

1 1 1 u v
= —|(u+r—Fv+-+-—+--21]).
24 U voov U

7 Proof of Theorem 6
We calculated S5(0, (w1, w2, ws)) in [K2] as

’ pg(wl,wg,w3)2p1(w1)p2(w2)p3(w3)
S5(0, (W1, wa, ws3)) =
(0, (W1, w2,05)) pa(wi, wa) pa(wa, w3 ) pa(ws, wi)

with
2w

p1(w) = \V o

Hence
A (u,v) = S50, (u, v, 1))
(2 ps(u, v, 1)
\/ﬁ p2(uav>p2(uv 1)p2(U, 1).
1
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