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Abstract. By using normalized multiple sine functions we show expressions for special
values of zeta functions and L-functions containing ζ(3), ζ(5), etc. Our result reveals the
importance of division values of normalized multiple sine functions. Properties of multiple
Hurwitz zeta functions are crucial for the proof.
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1 Introduction

The normalized sine function
S1(x) = 2 sin(πx)

has the basic importance in number theory. This is expressed as

S1(x) = Γ1(x)−1Γ1(1− x)−1

with the normalized gamma function

Γ1(x) = exp

(
∂

∂s
ζ(s, x)

∣∣∣∣
s=0

)
,

where

ζ(s, x) =
∞∑
n=0

(n+ x)−s

is the Hurwitz zeta function. In fact, Lerch’s formula says that

Γ1(x) =
Γ(x)√

2π

for the usual gamma function Γ(x).
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We know that the special value of S1(x) at a rational number x ∈ Q with 0 < x < 1 is
an algebraic integer

S1(x) =
(
e−πix − eπix) i

=
∣∣1− e2πix

∣∣ .

(Since S1(1/3) =
√

3, the factor “2” is needed in S1(x) to assure the integrality.) This
algebraic integer is intimately related to the cyclotomic unit, and at the same time it appears
in the socalled the class number formula of Dirichlet

L(1, χ) = −τ(χ)

N
log

(
N−1∏

k=1

S1

(
k

N

)χ̄(k)
)
,

where

L(s, χ) =
∞∑
n=1

χ(n)n−s

is the Dirichlet L-function for a non-trivial primitive even Dirichlet character χ modulo N
and

τ(χ) =
N−1∑

k=1

χ(k)e2πik/N

is the Gauss sum. We notice that the Dirichlet’s formula is written also as

L′(0, χ) = −1

2
log

(
N−1∏

k=1

S1

(
k

N

)χ(k)
)

via the functional equation.
The purpose of this paper is to generalize such a formula to the case of L(r, χ) for r ≥ 2

containing the Riemann zeta case χ = 1 by using the normalized multiple sine function
Sr(x), which was constructed and studied in the previous paper [KK] (see §2 for a survey).
We recall the construction. For ω1, ..., ωr > 0 and x > 0, the multiple Hurwitz zeta function
is defined by Barnes [B] as

ζr(s, x; (ω1, ..., ωr)) =
∞∑

n1,...,nr=0

(n1ω1 + · · ·+ nrωr + x)−s

in Re(s) > r. This has the analytic continuation to all s ∈ C as a meromorphic function,
and it is holomorphic at s = 0. Then the normalized multiple gamma function is defined as

Γr(x, (ω1, ..., ωr)) = exp

(
∂

∂s
ζr(s, x; (ω1, ..., ωr))

∣∣∣∣
s=0

)
.
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This is a constant multiple of multiple gamma function ΓBr (x; (ω1, ..., ωr)) of Barnes [B]:

Γr(x; (ω1, ..., ωr)) = ΓBr (x; (ω1, ..., ωr))/ρr(ω1, ..., ωr).

Now, the normalized multiple sine function is

Sr(x; (ω1, ..., ωr)) = Γr(x; (ω1, ..., ωr))
−1Γr(ω1 + · · ·+ ωr − x; (ω1, ..., ωr))

(−1)r .

Hence, by the zeta regularized product (see Manin [M]), we can write

Sr(x; (ω1, ..., ωr)) =
∏∞∐

n1,...,nr=0

(n1ω1 + · · ·+ nrωr + x)

( ∞∐
n1,...,nr=1

∏
(n1ω1 + · · ·+ nrωr − x)

)(−1)r−1

.

For example

S1(x, ω) = Γ1(x, ω)−1Γ1(ω − x, ω)−1

=
∏∞∐
n=0

(nω + x)
∏∞∐
n=1

(nω − x)

= 2 sin(πx/ω)

since we have
Γ1(x, ω) = (2π)−1/2Γ(x/ω)ω

x
ω
− 1

2

from
ζ1(s, x, ω) = ω−sζ(s, x/ω).

To simplify the notation we put Sr(x) = Sr(x; (1, ..., 1)), Γr(x) = Γr(x; (1, ..., 1)) and
ζr(s, x) = ζr(s, x; (1, ..., 1)). Hence

Sr(x) = Γr(x)−1Γr(r − x)(−1)r

and

Γr(x) = exp

(
∂

∂s
ζr(s, x)

∣∣∣∣
s=0

)
.

This normalized multiple sine function Sr(x) has good properties similar to the usual sine
function S1(x) = 2 sin(πx). We refer to §2 for details. For example, it has the periodicity
and the duplication formula:

Sr(x+ 1) = Sr(x)Sr−1(x)−1

and

Sr(2x) =
r∏

k=0

Sr

(
x+

k

2

)(rk)
.
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Moreover Sr(x) satisfies the following differential equation:

S ′r(x)

Sr(x)
= Qr(x) cot πx

with Qr(x) = (−1)r−1π
(
x−1
r−1

)
. So, Sr(x) is a solution of the algebraic differential equation

S ′′r (x) +
(
πQr(x)−1 − 1

)
S ′r(x)2Sr(x)−1 −Q′r(x)Qr(x)−1S ′r(x) + πQr(x)Sr(x) = 0.

We also note that Sr(x) has the Weierstrass product expression similar to

S1(x) = 2πx
∞∏
n=1

(
1− x2

n2

)

= 2πx
∞∏
n=1

((
1 +

x

n

)
1Hn (

1− x

n

)
1H−n

)
.

For example

S2(x) = 2πxe−x
∞∏
n=1

((
1 +

x

n

)n+1 (
1− x

n

)−n+1

e−2x

)

= 2πxe−x
∞∏
n=1

((
1 +

x

n

)
2Hn (

1− x

n

)
2H−n

e−2x

)

and

S3(x) = 2πe−ζ
′(−2)xe

x2

4
− 3

2
x

∞∏
n=1

((
1 +

x

n

)n2

2
+ 3n

2
+1 (

1− x

n

)n2

2
− 3n

2
+1

e
x2

2
−3x

)

= 2πe−ζ
′(−2)xe

x2

4
− 3

2
x

∞∏
n=1

((
1 +

x

n

)
3Hn (

1− x

n

)
3H−n

e
x2

2
−3x

)

(see §2).
Our main results are as follows. The first result expresses the values of the Riemann zeta

function at positive odd integers.

Theorem 1.1 Let n = 1, 2, 3, ..., and for k = 1, 2, ..., n put

a(2n+ 1, k) =
k∑

l=1

(−1)k−ll2n
(

2n+ 1

k − l
)
,

which is a positive integer. Then we have:
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(1)

ζ ′(−2n) = − log

(
n∏

k=1

S2n+1(k)a(2n+1,k)

)
.

(2)

ζ(2n+ 1) =
(−1)n−122n+1π2n

(2n)!
log

(
n∏

k=1

S2n+1(k)a(2n+1,k)

)
.

Examples 1.2 We have

ζ(3) = 4π2 logS3(1), (1.1)

ζ(5) = −4π4

3
log(S5(1)S5(2)11), (1.2)

ζ(7) =
8π6

45
log(S7(1)S7(2)57S7(3)302). (1.3)

The above formula (1.1) was proved in [KK] previously.

Remark 1.3 By the formula

Sr(k) =
k−1∏

l=0

Sr−l(1)(
k−1
l )(−1)l (1.4)

for 1 ≤ k < r (cf. §2), we can also express ζ(2n+ 1) in terms of Sl(1) (2 ≤ l ≤ 2n+ 1):

ζ(2n+ 1) =
(−1)n−122n+1π2n

(2n)!
log

(
2n+1∏

l=2

Sl(1)b(2n+1,l)

)

with b(2n+ 1, l) ∈ Z.

Example 1.4 Since S5(2) = S5(1)S4(1)−1 (see §2),

ζ(5) = −4π4

3
log(S5(1)12S4(1)−11).

Next, let χ be a non-trivial primitive Dirichlet character modulo N , and

L(s, χ) =
∞∑
n=1

χ(n)n−s (1.5)

the Dirichlet L-function. Then the values L(r, χ) for r = 1, 2, 3, ... are classified as

L(r, χ) =

{
πr · (χ-Bernoulli number) · · · χ(−1) = (−1)r

“difficult” · · · χ(−1) = (−1)r+1.
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Here “difficult” means that these values have not been calculated explicitly yet except for
the r = 1 case appearing in the Dirichlet’s class number formula.

We generalize Dirichlet’s result to some difficult case.

Theorem 1.5 Let χ be a primitive odd character modulo N . Then:

(1)

L′(−1, χ) = −1

2
log

N−1∏

k=1

(
S2

(
k

N

)N
S1

(
k

N

)k)χ(k)

.

(2)

L(2, χ) =
2πiτ(χ)

N2
log

N−1∏

k=1

(
S2

(
k

N

)N
S1

(
k

N

)k)χ̄(k)

.

Examples 1.6 We have

L(2,

(−4

∗
)

) = −π
4

log

(
S2

(
1

4

)4

S1

(
1

4

)
S2

(
3

4

)−4

S1

(
3

4

)−3
)

=
π

4
log

(
23S2

(
1

4

)−8
)
,

L(2,

(−3

∗
)

) = −2
√

3π

9
log

(
S2

(
1

3

)3

S1

(
1

3

)
S2

(
2

3

)−3

S1

(
2

3

)−2
)

=
4
√

3π

9
log

(
3S2

(
1

3

)−3
)
,

where we used the following relations (see §2):

S2(1− x) = S2(1 + x)−1

=
(
S2(x)S1(x)−1

)−1

= S2(x)−1S1(x).

Theorem 1.7 Let χ be a non-trivial primitive even character modulo N . Then:

(1)

L′(−2, χ) = −1

2
log

N−1∏

k=1

(
S3

(
k

N

)2N2

S2

(
k

N

)2Nk−3N2

S1

(
k

N

)k2
)χ(k)

.
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(2)

L(3, χ) =
2π2τ(χ)

N3
log

N−1∏

k=1

(
S3

(
k

N

)2N2

S2

(
k

N

)2Nk−3N2

S1

(
k

N

)k2
)χ̄(k)

.

Example 1.8

L(3,

(
12

∗
)

) =

√
3π2

432
log

(
S3

(
1

12

)288

S2

(
1

12

)−408

S1

(
1

12

)
S3

(
5

12

)−288

S2

(
5

12

)312

S1

(
5

12

)−25

S3

(
7

12

)−288

S2

(
7

12

)264

S1

(
7

12

)−49

S3

(
11

12

)288

S2

(
11

12

)−164

S1

(
11

12

)121
)
.

Thus the values Sr(a) for a ∈ Q satisfying 0 < a < r are quite interesting in relation to
zeta values. We formulate our expectation as

Expectation 1.9 Sr(a) ∈ Q for a ∈ Q satisfying 0 < a < r.

The situation would become transparent when we generalize it as below:

Expectation 1.10 Sr(
k1ω1+···+krωr

N
;ω) ∈ Q for N = 1, 2, 3, ... and ki = 0, 1, ..., N − 1.

It is easy to see that Expectation 1.9 is contained in Expectation 1.10 for ω = (1, ..., 1),
and Expectation 1.10 clearly indicates that we are studying division values of multiple sine
functions.

We note that Shintani [Sh] deeply studied S2(x, (1, ε)) for a fundamental unit ε of a real
quadratic field. In particular, he showed its appearance in the expression for a special value
of a suitable L-function, and he obtained certain algebraicity such as

S2

(
1

3
, (1, ε)

)
S2

(
1 +

ε

3
, (1, ε)

)
S2

(
2 + 2ε

3
, (1, ε)

)
=

√√√√ 1+
√

21
2
−
√

3+
√

21
2

2

for ε = 5+
√

21
2

, which is the fundamental unit of Q(
√

21). Moreover, Shintani studied
Kronecker’s Jugendtraum for a real quadratic field by using S2(x, (1, ε)) (he denoted it by
F (x; (1, ε))−1). It might be valuable to report the following general product formula

N−1∏
k1,...,kr=0

(k1,...,kr)6=(0,...,0)

Sr

(
k1ω1 + · · ·+ krωr

N
; (ω1, ..., ωr)

)
= N

for an integer N ≥ 2. (See §2.)

Theorem 1.11 (1) Expectations 1.9 and 1.10 are valid for r = 1.
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(2) Expectations 1.9 and 1.10 are valid for r = 2 with N = 2. Actually

S2

(ω1

2
;ω
)

= S2

(ω2

2
;ω
)

=
√

2

and

S2

(
ω1 + ω2

2
;ω

)
= 1.

Remark 1.12 This paper was referred to in [KK] as a preprint in 2001.

2 Multiple Sine functions

The basic properties of multiple sine functions were proved in [K] and [KK]. Here we recall
some of them.

Theorem 2.1 [KK, Theorem 2.1] The multiple sine function Sr(x, ω) satisfies the following
identities:

(a) For ω = (ω1, ..., ωr) ∈ Rr+ put ω(i) = (ω1, ..., ωi−1, ωi+1, ..., ωr) ∈ Rr−1
+ , then we have

Sr(x+ ωi, ω) = Sr(x, ω)Sr−1(x, ω(i))−1, (2.1)

where we put S0(x, ·) ≡ −1.

(b) For a positive integer N , we have

Sr(Nx, ω) =
∏

0≤ki≤N−1

Sr

(
x+

k · ω
N

, ω

)
, (2.2)

where the product is taken over the vectors k = (k1, ..., kr).

(c)

∏
0≤ki≤N−1

k6=0

Sr

(
k · ω
N

, ω

)
= N.

(d)
Sr(0, ω) = 0.

(e) We have for any c > 0 the homogeneity

Sr(cx, cω) = Sr(x, ω).
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Theorem 2.2 (a) For r ≥ 2 we have

Sr(x+ 1) = Sr(x)Sr−1(x)−1.

(b)

Sr(2x) =
r∏

k=0

Sr

(
x+

k

2

)(rk)
.

(c) Put Qr(x) = (−1)r−1π
(
x−1
r−1

)
, then

S ′r(x)

Sr(x)
= Qr(x) cot (πx).

(d)

S ′′r (x) +
(
πQr(x)−1 − 1

)
S ′r(x)2Sr(x)−1 −Q′r(x)Qr(x)−1S ′r(x) + πQr(x)Sr(x) = 0.

(e)

S2(x) = 2πxe−x
∞∏
n=1

((
1 +

x

n

)n+1 (
1− x

n

)−n+1

e−2x

)

= 2πxe−x
∞∏
n=1

((
1 +

x

n

)
2Hn (

1− x

n

)
2H−n

e−2x

)
.

(f)

S3(x) = 2πe−ζ
′(−2)xe

x2

4
− 3

2
x

∞∏
n=1

((
1 +

x

n

)n2

2
+ 3n

2
+1 (

1− x

n

)n2

2
− 3n

2
+1

e
x2

2
−3x

)

= 2πe−ζ
′(−2)xe

x2

4
− 3

2
x

∞∏
n=1

((
1 +

x

n

)
3Hn (

1− x

n

)
3H−n

e
x2

2
−3x

)
.

Proof. The assertions (a) and (b) are immediate consequences from [KK, Theorem 2.1]. The
differential equation (c) is proved in [KK, Theorem 2.15]. We compute from (c) that

(
Qr(x)−1S

′
r

Sr
(x)

)′
= (cot πx)′

= − π

sin2 πx
= −π(cot2(πx) + 1)

= −π
((

Qr(x)−1S
′
r

Sr
(x)

)2

+ 1

)
,
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which gives the proof of (d). Finally (e) and (f) are deduced from [KK, Examples 3.6], where
we express the normalized multiple sine functions Sr(x) in terms of primitive multiple sine
functions which are defined by the Hadamard product.

3 The Riemann zeta function

Lemma 3.1 There exist uniquely determined integers a(r, k) such that

xr−1 =
r−1∑

k=1

a(r, k) rHx−k (3.1)

with rHx−k = (x−k+r−1)···(x−k+1)
(r−1)!

for an indeterminate x. Indeed a(r, k) are given as follows:

a(r, k) =
k∑

l=1

(−1)k−llr−1

(
r

k − l
)
. (3.2)

Moreover,

a(r, r − k) = a(r, k). (3.3)

Proof. The existence of a(r, k) follows from the fact that the (r − 1) polynomials rHx−k
(k = 1, ..., r − 1) are linearly independent over Q. By putting x = k in (3.1), we have

kr−1 = a(r, 1)

(
k + r − 2

r − 1

)
+ a(r, 2)

(
k + r − 3

r − 1

)
+ · · ·+ a(r, k) · 1.

This leads to

a(r, k) = kr−1 −
k−1∑
j=1

a(r, j)

(
k + r − 1− j

r − 1

)
.

Thus (3.2) is proved by induction on k. Next, from (3.1)

(−x)r−1 =
r−1∑

k=1

a(r, k) rH−x−k

and

rH−x−k =
(−x− k + r − 1) · · · (−x− k + 1)

(r − 1)!
= (−1)r−1

rHx−(r−k),

so

xr−1 =
r−1∑

k=1

a(r, k) rHx−(r−k) =
r−1∑

k=1

a(r, r − k) rHx−k.

Hence, by the uniquenes of a(r, k) we have a(r, r − k) = a(r, k).
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Examples 3.2 For x = n ∈ Z and r = 2, 3, 4, 5 we have

n = 2Hn−1,

n2 = 3Hn−1 + 3Hn−2,

n3 = 4Hn−1 + 4 4Hn−2 + 4Hn−3,

n4 = 5Hn−1 + 11 5Hn−2 + 11 5Hn−3 + 5Hn−4.

Proof of Theorem 1.1:
For r ≥ 2 we have by Lemma 3.1

ζ(s+ 1− r) =
∞∑
n=1

nr−1

ns

=
r−1∑

k=1

a(r, k)
∞∑
n=1

rHn−k
ns

=
r−1∑

k=1

a(r, k)ζr(s, k),

where ζr(s, k) is the multiple Hurwitz zeta function

ζr(s, k) =
∞∑
n=0

rHn

(n+ k)s
.

Thus we have

ζ ′(1− r) =
r−1∑

k=1

a(r, k) log Γr(k).

In case r = 2n+ 1, it follows that

ζ ′(−2n) =
2n∑

k=1

a(2n+ 1, k) log Γ2n+1(k)

= −
n∑

k=1

a(2n+ 1, k) log S2n+1(k)

= − log

(
n∏

k=1

S2n+1(k)a(2n+1,k)

)
,

where we used S2n+1(k) = Γ2n+1(k)−1Γ2n+1(2n + 1 − k)−1 and a(2n + 1, 2n + 1 − k) =
a(2n+ 1, k).
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Examples 3.3 We saw in [KK, Theorem 3.8(c)] that

ζ(3) = 4π2 logS3(1).

Combining this with the fact that

S3(1) =
√

2S3

(
1

2

)−4/3

,

which can be obtained by the facts

S3(1) = S3(2 · 1

2
)

= S3(
1

2
)S3(1)3S3(

3

2
)3S3(2)

= S3(1)4S3(
1

2
)4S2(

1

2
)−3

and that S2(1
2
) =
√

2, we have

ζ(3) =
16π2

3
log

(
S3

(
1

2

)−1

2
3
8

)

which was proved in [KK, Theorem 3.8(b)] by another method (using a “primitive multiple
sine function”).

4 Dirichlet L-functions for odd characters

We prove the formula for L(2, χ) for odd characters. Since our method follows a proof for
Dirichlet’s result on L(1, χ) for even characters, we first recall it. We show the formula for
L′(0, χ). Then the result on L(1, χ) follows via the functional equation.

Let χ be a non-trivial primitive Dirichlet character modulo N . We have

L(s, χ) =
N−1∑

k=1

χ(k)
∞∑
m=0

1

(mN + k)s

= N−s
N−1∑

k=1

χ(k)ζ(s,
k

N
),

where

ζ(s, x) =
∞∑
m=0

1

(m+ x)s
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is the Hurwitz zeta function. Hence

L(0, χ) =
N−1∑

k=1

χ(k)ζ(0,
k

N
)

and

L′(0, χ) =
N−1∑

k=1

χ(k)ζ ′(0,
k

N
)− (logN)

N−1∑

k=1

χ(k)ζ(0,
k

N
)

=
N−1∑

k=1

χ(k)ζ ′(0,
k

N
)− (logN)L(0, χ).

When χ is even, it holds that L(0, χ) = 0 (this is the reason of “difficult”), so we have

L′(0, χ) =
N−1∑

k=1

χ(k)ζ ′(0,
k

N
)

=
N−1∑

k=1

χ(k) log Γ1

(
k

N

)

=
1

2

N−1∑

k=1

χ(k)

(
log Γ1

(
k

N

)
+ log Γ1

(
N − k
N

))

= −1

2

N−1∑

k=1

χ(k) log S1

(
k

N

)
.

This gives the Dirichlet’s result.

Proof of Theorem 1.5
We prove (1), then (2) is obtained via the functional equation. Since

ζ(s− 1, x) =
∞∑
n=0

n+ x

(n+ x)s
=
∞∑
n=0

n+ 1

(n+ x)s
+ (x− 1)

∞∑
n=0

1

(n+ x)s
= ζ2(s, x) + (x− 1)ζ1(s, x),

we have
ζ ′(−1, x) = ζ ′2(0, x) + (x− 1)ζ ′1(0, x),
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as ζ1(s, x) = ζ(s, x). Now that χ is odd and that L(−1, χ) = 0, we compute

L′(−1, χ) = N

N−1∑

k=1

χ(k)ζ ′(−1, k
N

)

= N
N−1∑

k=1

χ(k)ζ ′2(0, k
N

) +N
N−1∑

k=1

χ(k)( k
N
− 1)ζ ′1(0, k

N
)

= N

N−1∑

k=1

χ(k) log Γ2( k
N

) +N

N−1∑

k=1

χ(k)( k
N
− 1) log Γ′1( k

N
)

= N

N−1∑

k=1

χ(k) log

(
Γ2( k

N
)Γ1( k

N
)
k
N
−1

)

=
N

2

N−1∑

k=1

χ(k) log


 Γ2( k

N
)

Γ2(1− k
N

)

Γ1( k
N

)
k
N
−1

Γ1(1− k
N

)−
k
N




=
N

2

N−1∑

k=1

χ(k) log

(
Γ2( k

N
)

Γ2(2− k
N

)

(
Γ1( k

N
)Γ1(1− k

N
)
) k
N
−1

)

= −N
2

N−1∑

k=1

χ(k) log

(
S2( k

N
)S1( k

N
)
k
N
−1

)

= −N
2

N−1∑

k=1

χ(k) log

(
S2( k

N
)S1( k

N
)
k
N

)
,

where we used the fact S1( k
N

) = S1(N−k
N

) with χ(N − k) = −χ(k).

5 Dirichlet L-functions for even characters

Proof of Theorem 1.7
We again show (1), then (2) is obtained via the functional equation. Since

(n+ x)2 = 2 3Hn + (2x− 3) 2Hn + (x− 1)2
1Hn,

we have

ζ(s− 2, x) =
∞∑
n=0

(n+ x)2

(n+ x)s
= 2ζ3(s, x) + (2x− 3)ζ2(s, x) + (x− 1)2ζ1(s, x).

Therefore we have

ζ ′(−2, x) = 2ζ ′3(0, x) + (2x− 3)ζ ′2(0, x) + (x− 1)2ζ ′1(0, x).
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Now that χ is even and that L(−2, χ) = 0, we compute

L′(−2, χ) = N2

N−1∑

k=1

χ(k)ζ ′(−2, k
N

)

= N2

N−1∑

k=1

χ(k)
(
2ζ ′3(0, k

N
) + (2 k

N
− 3)ζ ′2(0, k

N
) + ( k

N
− 1)2ζ ′1(0, k

N
)
)

= N2

N−1∑

k=1

χ(k) log

(
Γ3( k

N
)2Γ2( k

N
)2

k
N
−3Γ1( k

N
)(
k
N
−1)2

)

= −1
2

log
N−1∏

k=1

(
S3( k

N
)2N2

S2( k
N

)2Nk−3N2

S1( k
N

)k
2
)χ(k)

.

6 Division values of normalized multiple sines

Proof of Theorem 1.11
Since S1(x, ω) = 2 sin(πx

ω
) by [KK, §2], we have

S1(kω
N
, ω) = 2 sin(kπ

N
) = −i(eiπk/N − e−iπk/N) ∈ Q,

which leads to (1).
Recall that

S2(x, (ω1, ω2)) =
Γ2(ω1 + ω2 − x, (ω1, ω2))

Γ2(x, (ω1, ω2))
.

First

S2(ω1+ω2

2
, (ω1, ω2)) =

Γ2(ω1+ω2

2
, (ω1, ω2))

Γ2(ω1+ω2

2
, (ω1, ω2))

= 1.

Secondly

S2(ω1

2
, (ω1, ω2)) =

Γ2(ω1

2
+ ω2, (ω1, ω2))

Γ2(ω1

2
, (ω1, ω2))

.

Here we use ([KK, §2])

Γ2(x+ ω2, (ω1, ω2)) = Γ2(x, (ω1, ω2))Γ1(x, ω1)−1.

Then
Γ2(ω1

2
+ ω2, (ω1, ω2)) = Γ2(ω1

2
, (ω1, ω2))Γ1(ω1

2
, ω1)−1.

Hence
S2(ω1

2
, (ω1, ω2)) = Γ1(ω1

2
, ω1)−1.

15



Now ([KK, §2])

Γ1(x, ω) =
Γ( x

ω
)√

2π
ω
x
ω
− 1

2 ,

so

Γ1(ω1

2
, ω1) =

Γ(1
2
)√

2π
=

1√
2
.

Thus
S2(ω1

2
, (ω1, ω2)) =

√
2.

Remark 6.1 A suitable restriction on the form of division points such as made in Expec-
tation 1.10 will be needed as the following example shows:

S2(2, (1,
√

2)) 6∈ Q. (6.1)

By this example, we must seriously look at Sr(a1ω1 + · · · + arωr; (ω1, · · · , ωr)) for general
ai ∈ Q. The proof of (6.1) is given by

S2(2, (1,
√

2))

S2(1, (1,
√

2))
=
S2(1 + 1, (1,

√
2))

S2(1, (1,
√

2))
= S1(1,

√
2)−1 =

(
2 sin

π√
2

)−1

6∈ Q,

where

2 sin
π√
2

= −i(ei π√2 − e−i π√2 )

= −i((−1)1/
√

2 − ((−1)1/
√

2)−1)

and we used the transcendency result of Gelfond-Schneider (−1)1/
√

2 6∈ Q. Moreover we
appeal to the following facts:

S2(ω1, (ω1, ω2)) =

√
ω2

ω1

,

S2(ω2, (ω1, ω2)) =

√
ω1

ω2

.

In particular
S2(1, (1,

√
2)) = 2

1
4 ∈ Q.

Thus we obtain (6.1).
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