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1 Introduction

In 1737, Leonhard Euler [E] made a quite important discovery at St Petersburg on the
existence of the Euler product expression for the zeta function ((s) =Y o2 n™*:

s) =1 =p™),

p

where p runs over the prime numbers. A typical consequence of this Euler product is the
explicit formula for the number 7 (z) of primes under x given by Riemann [R] using the zeros
and the pole of ((s). Up to now it is known that there exist various zeta functions having
Euler product expressions.

The purpose of this paper is to study multiple Euler factors (MEF) and multiple Euler
products (MEP) via multiple explicit formulas (MEF) naturally associated to “absolute
tensor products” of several zeta functions.

We recall the construction of the absolute tensor product (ATP). We refer to [KK1] and
[KW1] for details.



Let

2(s) = TIs— o
peC
_ 9 m;(p)
_ exp(_a_w wzop%—@—p)w)

be “zeta functions” expressed as regularized product, where
m; C—Z

denotes the multiplicity function for j = 1,...,7. The absolute tensor product (Z; ® --- ®
Z,)(s) is defined as

(Zl Q& ZT)<S) = H (3 — (pl + .+ pr))m(ﬂl,“wpr)

p1y,pr€C
with
1 Im(p;) >0, (j=1,...,7)
m(p1, -, pr) =ma(pr)---me(pe) x § (=1)7" Im(p;) <0, (j=1,...,7)
0 otherwise.

This definition originates from [K]. We refer to the excellent survey of Manin [M]. The
notation of the regularized product is due to Deninger [Denl]|. See [HKW] concerning the
needed regularized products. The absolute tensor product was studied by Schréter [S] in the
name of the “Kurokawa tensor product.”

We are especially interested in the case of Hasse zeta functions Z;(s) = ((s, A;) for
commutative rings A, ..., A, of finite type over Z. We recall that the Hasse zeta function
((s, A) of a commutative ring A is defined to be

(s, 4) = [ —N@m)™)™

= exp (Z Z %N(m)_k“') ,

where m runs over maximal ideals of A and N(m) = #(A/m). This is also written as

C(S,A) = exp ( Z i #Homril;i(Avam)pms> .

p:primes m=1

For simplicity we write
C(SaAl K& AT) = <(87A1) Q- ® <(87AT>‘
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Actually, as was explained by Manin [M], we expect that our multiple zeta function would
be the zeta function of the “absolute tensor product”

Al ®F1 "'®F1 AT

that is the tensor product over the (virtual) “one element field” F;. See [KOW] and [Dei]
for the absolute mathematics over “Fy”. In any way, we notice that ((s,4; ® --- ® A,)
has the following additive structure on zeros and poles: if ((s;, 4;) = 0 or co and Im(s;)
( = 1,...,7) have the same signature, then ((s; + -+ s, 41 ®---® A,) = 0 or co.

Such an additive structure was crucial in the study of Hasse zeta functions of positive
characteristic (congruence zeta functions) pursued by Grothendieck [G] and Deligne [D],
where Euler products were important to restrict the region of zeros and poles for our reaching
to the analogue of the Riemann Hypothesis.

We expect that our multiple zeta functions also have Euler products of the following
form:

(s, A) @ @C(s,A) = ]  Hemrooomn)(N(mi) ™, ., N(my) ™)

(my,...,m;)

where m; runs over the maximal ideals of A; and Hym, . m,)(T1, ..., ;) is a power series in
Ti,..., T, of the constant term 1 with a possible degeneration at (mj, ..., m,), where N(m;) =
N(mj;) for some ¢ # j. More generally we expect that the multiple zeta function Z;(s) ®
-+ ® Z.(s) has an Euler product

Zi(8)® - ® Z(s) = 11 Hpy oy (N (1), N(pr) ™)

(P1ye-spr)EPLX X Py

when each zeta function Z;(s) has an Euler product

Zi(s) = 1] Hy(N(p)™)

pEPj

and a functional equation; here Hg(T) is a power series in 7" and H,, . . )(Th,....,T;) is a
power series in (77, ...,7,) with a possible degeneration at (ps,...,p,), where N(p;) = N(p;)
for some i # 7.

In a previous paper [KK1] we investigated the absolute tensor product (s, F,)®((s,F,)
for primes p and ¢ by using a signed double Poisson summation formula, where ((s,F,) =
(1 —p~*)~'. In other words we constructed a new zeta function having zeros (or poles)
at sums of poles of ((s,F,) and ((s,F,). We state the result as follows in refining and
complementing the main theorem of [KK1]. For simplicity we use the notation F(s) = G(s)
for functions F(s) and G(s) to indicate that F(s) = e?*)G(s) for some polynomial Q(s).



Theorem 1 Let p and g be distinct prime numbers. Define the function (,4(s) in Re(s) > 0
as follows:

] log q s ] logp q_ns

Cpals) = exp T2, P Ty n
n=1 n=1
ITe=1 . 11 .
2n_1 np 2;71(] )

Then the function (,4(s) has the following properties:
(0) It converges absolutely in Re(s) > 0.

(1) The function (,4(s) has an analytic continuation to all s € C as a meromorphic function
of order two.

(2) All zeros and poles of (,4(s) are simple and located at

. m n
s = 2mi + ,
(logp log q)

where (m,n) is a pair of nonnegative integers or a pair of negative integers. Indeed it
gives a zero or pole according as they are nonnegative or negative.

(3) We have the identification
Cpal(s) = ((s, Fp) @ (s, Fy).
(4) The function (,,(s) satisfies a functional equation:

Cpg(—3) = Cp,q(s)il(pQ)%(l -p )1 —=q7)

tlogplogg , mi (logqg logp
—5 - — 3)).
X exXp ( AT ° 6 \logp * log q *

When p = ¢ the result is as follows:

Theorem 2 Let

R B ilogp \ =1 _,,
Cpm(s) ‘= €exp (%;ﬁp - (1_ o 5) ;Ep >

in Re(s) > 0. Then the function (,,(s) has the following properties:



(0) It converges absolutely in Re(s) > 0.

(1) The function ¢, ,(s) has an analytic continuation to all s € C as a meromorphic function
of order two.

(2) All zeros and poles of (,,(s) are located at

2min

5 = ,
log p

which gives a zero or pole of order |n + 1|, according as n is a nonnegative or negative
mnteger.

(8) We have the identification
Crap(s) = (s, Fp) @ ((s, Fyp).

(4) The function (,,(s) satisfies a functional equation:

Gop(=8) = Gop(8) TP (L = p~") exp (%52 - ?) .

Remark 1.1 These theorems are natural generalizations of the following well-known facts
on the simplest zeta function

o0

Gp(s) = exp (Z %p—ms>

m=1
defined in Re(s) > 0.
(0) It converges absolutely in Re(s) > 0.

(1) The function (,(s) has an analytic continuation to all s € C as a meromorphic function
of order one. In fact, (,(s) = (1 —p~*)~! for all s € C.

(2) The function (,(s) has no zeros. All poles of (,(s) are simple and located at s =
2min/logp for n € Z.

(3) We have the identification
Co(s) = (s, Fp).

(4) The function (,(s) satisfies a functional equation (,(—s) = (,(s)(—p~*).

Remark 1.2 The functional equation in Theorem 2(4) “coincides” with Theorem 1(4) when
p = ¢. This is remarkable considering the quite different appearance of ¢, ,(s) and ¢, ,(s).



Remark 1.3 Let

n

u
Li = —
i-(u) 2o

be the polylogarithm function of order r. Then the function (,(s) in Remark 1.1 is written
as

Gp(s) = exp (Lis(p™))
in Re(s) > 0 since Lij(u) = log(:X) for |u| < 1. Similarly the function ¢,,(s) in Theorem
2 is written as , 1
i ilo L s
Goots) =exp (5l ) - (1= 552 i)
in Re(s) > 0. Appearance of such a polylogarithm is characteristic in our multiple Euler
factors. The function

= cot(mma
Z (rma) um
m=1 m
appearing in Theorem 1 is considered as a variation of a polylogarithm (of order 2); see [KW1]
for such a “multiple polylogarithm” (multi-¢g-log) and its relation to Appell’s O-function.

We prove Theorems 1 and 2 in §2 supplementing [KK1], where the signed double Poisson
summation formula and the theory of multiple sine functions developed in [KK2] are essential.
The main difference from [KK1] is the functional equation not stated there.

From our viewpoint, it is very interesting to see the nature of [,  (,4(s). Unfortunately,
however, it does not converge even for sufficiently large Re(s). Our “a-version” (¥ (s) treated
below remedies the situation. In passing we notice on the analyticity of the diagonal FEuler

product shown in §2.

Theorem 3 Let
Z(s) = [[ Gu(s)-
p

Then, Z(s) is absolutely convergent in Re(s) > 1, and it has an analytic continuation with
singularities to Re(s) > 0 with the natural boundary Re(s) = 0.

In the later half of this paper we study “the double Riemann zeta function” ((s,Z) ®
((s,Z) by establishing the signed double explicit formula in the following theorem, which
generalizes the signed double Poisson summation formula used in the proof of Theorems 1
and 2.

For simplicity put &(s) = ((s + 1) = ((s + 1,2Z) for {(s) = I'r(s)((s) with I'r(s) =
77°/?I'(s/2). The functional equation of ((s) is written as &(s) = &(—s). We recall that
nontrivial zeros of ((s) are zeros in the strip [Re(s — £)| < 1/2. We denote by 3 + v such a
zero, where ~ is a complex number in —1/2 < Im(y) < 1/2.



Hereafter let h(t) be an odd regular function in |Re(t)| < 1 satisfying h(t) = O(|t|~?) as
|t| — oco. We put H,(t) := h(2a + it) and

= / H(t)e™dt.

Theorem 4 Let 1/2 < a < 1. We have

Z Ho(m +72) Z Z +ZH + HZ o T HG,
p#q

Re(71),Re(v2)>0

where the sum in the left hand side is taken over pairs (% + i1, % +iv2) of nontrivial zeros
of the Riemann zeta function, the sum in the right hand side is taken over pairs of distinct
primes p,q or primes p, and we define for pairs of distinct primes p, q as

1

1 log plog q (N —
o= Ho(—m!1 Hy(-nloga)) (11
Hpq A2 L log(p™q") pm(aJr%)qn(aJr%) o(—mlogp) + Ho(—nlogq) (1.1)

1 logplog q 1 <~ —~ )
+47r2mn log(z_r) pm(a+%)qn(a+%) H,(—mlogp) — H,(—nlogq) ), (1.2)

and for a prime p,

o« 0 logp —~ —
Hyp = 4W22(m+n)p(m+")(a+§) (HO( mlogp) + Ho( nlogp)) (1.3)
i logp ~ —
S S T T
m#n
—5(logp)* > p 2@ D, (1)(~mlogp), (1.5)
m=1
1 < logp °°,t /t Th 1N\,
poo = " H, = =it ) at'dt 1.

Hp,oo 27T2m1pma+)/ () Op Tr Oé+2—|—l ( 6)

1 « Ing m(t—t') I'r L !

N 1 [ ‘Tg 1 Iy 1
1 ° I'r 1 I'r 1
— H — —(t - t, (1.
+47r2 - o(t)/ T (Oz+ 5 +Zt1> I'n (CH' 5 i( t1)) dtydt, (1.9)



and

- __/0 Z h(iy + ae’ )§< e do (1.10)

L T T

where m,n € Z, m,n > 1.

Notice that only pairs of zeros in the upper (or lower) half plane are counted in the left
hand side of Theorem 4. The method of Cramér [C] is important in the proof: see Deninger
[Den2] and Voros [V] around Cramér’s method.

For defining the (p, ¢)-Euler factors, we put

1 1
M) = G3sp ~ =

in Theorem 4. We denote by p, ¢ any (finite or infinite) places. The (p, ¢)-Euler factor of
the double Riemann zeta function ((s,Z) ® ((s,Z) is defined as follows:

o (s +1) =exp (//H dsds)

We also denote the remainder factor by

G (s+1) =exp (/ Hg(s)dsds) .

Here we notice that these definitions of ¢ (s) and (g (s) have ambiguities emerged from the
integral constants, that is the factor exp(Q(s)) with Q(s) a polynomial with deg(Q) < 2. We
do not normalize them at first. Rather we normalize them a posteriori after the calculation;
see the remark to Theorem 5 below. The double Riemann zeta function ((s,Z) ® ((s,Z) is
expressed by an Euler product over the pairs of places (p, q).

(1.12)

Theorem 5 The (p,q)-FEuler factors of the double Riemann zeta function ((s,Z) ® ((s,Z)
are described as follows:

(1) For distinct prime numbers p and q, we have

) w2 (log p)(log q)
Cp,q(s> - p (m Z (mlogp)? — (nlog q)?

m(s—a)

cosh(ma logp) miamd) nlogq sinh(malogp) _ !
qn(a+%) mlogp qn(a+%)

mlog p sinh(nalog q) —n(s—1) cosh(nalog q) —n(s—1)



in Re(s) > a+ %, where the sum is taken over all pairs of all positive integers m and n.

It has an analytic continuation to the entire plane.
(2) For a prime number p, we have in Re(s) > o+ 3

o 2 ) el " sinh(mal
Gop(8) = exp EZ - — (cos (ma ogp)—l—asm (ma ogp)) (1.13)

+% ((logp)(s — 1 —2a)log(1 — p~*) — Lip (p~*) + Liz (p52°‘))> J(1.14)

which has an analytic continuation to the entire plane.

(3) The (p,c0)-factor (. (s) of the double Riemann zeta function has an analytic continu-
ation to the entire plane, and moreover [], (5 (s) has an analytic continuation to the
entire plane with possible singularities at s = 3 — 2k + o (k> 0), 1 — 2k (k > 0), —2k
(k>1), p—2k (k>0), 3 +pEa, 3+awithp any nontrivial zero of ((s).

(4) The (00, 00)-factor (S, . (s) of the double Riemann zeta function is analytic with possible
singularities at s = —2n, —2n + a + % withn =0,1,2, ...

After completing the proof of (1)-(3) of Theorem 5 in §4-§6 of the text, we fix (7 (s) as
calculated there “with the integral constant 0”; in other words we fix (& (s) (p # ¢) and
o ,(s) as in the right hand sides of (1) and (2) of Theorem 5; see §6 concerning (' (s) and
Hp (poo(8). In particular we will use these normalized Euler factors for the statement of

Theorem 7 below.

Remark 1.4 To compare ¢, (s) (p # q) and ¢, (s) with (,4(s) (p # ¢) and ,,(s) treated
in Theorem 1 and Theorem 2 respectively, it would be suggestive to take « = —1/2 formally.
For this parameter «, the sums over sinh-terms diverge. We look at the non-sinh parts:

. B 1 logplogg
Cpg (8)non-sinh = €XP (m’ Z (mlogp)? — (nlogq)?

(cosh (2 togp) p= — cosh (-2 logq) q-n<s-;>>>

and

1 2 cosh(—2 log p) !
2 . —_ . 2 7771,(375)
Cp,p (S)non-smh exXp (7‘(’2 m%én mg - n2 p

N 2%2 ((log p)slog(l —p~*) — Liz(p*) + Liz(P(51)))> .



Then, the elementary summation

— cot - — C\Z
i . 5 €O (7a) 52 (a€e C\Z)
A 1 (e 2\ (0)
n a 4a2
implies the followings:
. 00 logp . 00 logp
1 i cot(mm=L) i cot(mm=L)
2 . — __ - o8ql -ms _ __~  logg’ —m(s—1)
Cp.d (8)non-sinh exp( 4m:1 m p 4; m p
¢ < COt(’]T’I’Liggq) —ns ¢ o cot Wnizgg) —n(s—1)
B e B DD
1 logq s s i logp —s s
B (Lia(p ) + Linp ™) + e (Linly ™)+ Lin(g ™)

and

STA o islogp..  _,
G S = 0 (JoLiar™) + 3L ) = “2EPLiy ) )

Theorem 6 The remaining factor (§(s) of the double Riemann zeta function is an analytic
function on C with possible singularities at s = p + 5 + sgn(Im(p))ae® with 0 < 6 < 7 for
any nontrivial zero p of ((s) and at s belonging to |s — 1| < 2a.

In the next theorem we use the half Riemann zeta function (, (s) studied in [HKW] (see §4
of the text) and the multiple gamma function I',.(s) of Barnes [Bar]| (see §2 of the text).
Theorem 7 The Fuler product for the double Riemann zeta function

2

HC+(5 +2m) »
C(s,Z) ® ((s,Z) (H ¢ (s ) m:1<+(8_ | (g) Ty (s)%s(s — 2)

is absolutely convergent in Re(s) > a + %, where (p,q) runs through pairs of all (finite or
infinite) places. It has an analytic continuation (with singularities) to the entire plane and
satisfies a functional equation between s and 2 — s.

The construction of the later half of this paper is as follows. Theorem 4 is proved in §3.
Then as an application of Theorem 4, Theorem 5 will be proved in §4-§7: (7 (s) (p # q) is

10



treated in §4, (¥ (s) in 85, (¥ (s) in §6, and (5, . (s) in §7. Next, Theorem 6 is shown in §8.
Consequently we prove Theorem 7 in §9. Lastly we briefly notice on remaining problems in
610.
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2 Proof of Theorems 1, 2 and 3

We recall the multiple sine functions studied in [KK2]. For this purpose we use the multiple
Hurwitz zeta function investigated by Barnes [Bar] just 100 years ago:

oo

CT(Sasz) = Z (n1w1+"'+nrwr+z)_s

n1,...,np=0

for w = (wyq,...,w,). The definitions of the multiple gamma function and the multiple sine
function are as follows:
50)

= (H(n~w+z)>_l,

n>0

0
Fr(zaw) = eXp<%CT(S,Z,CU)

Si(zw) = To(z,w) ' To(wi + - +w, — z,w) Y

- (H(n w+ z>) (H(n w - z>) o

n>0

We write I';(2) = I, (2, (1, ..., 1)) and S,(2) = S,(z, (1, ...,1)) for simplicity. When r = 2, we
have w = (wy,ws) and

Sa(z, (wi,ws)) = Tz, (w1, ws)) Ta(wy + wa — 2, (W1, ws)).

11



The study of this double sine function was originated by Shintani [Sh] towards the Kro-
necker’s Jugendtraum for a real quadratic field. We obtained the following proposition in
[KK2, Proposition 2.4].

Proposition 2.1 We have an expression:

(=171
S, — QG — )T P <_ z )pT s
(2, w) = e"2(z — |w|) [ ] —— M1 w

n>0

r

with Qu(z) a polynomial with degQ, < r, P.(u) := (1 — u)exp(u + “—22 + -4+ %) and
1:=(1,---,1).

Lemma 2.2

So(z,w)Sa(—2,w) = —4sin <ﬂ> sin <E> .

Proof. By the preceding proposition we have

SQ(Z,CU>SQ(_27"‘)) = —22 4+ (wl + w2)2

. 2z z
H’ Py < n1W1+n2w2> Py <n1w1+n2w2)

n>0 P2 ((n1+1)w1i(n2+1)w2) P2 (_ (n1+1)w1j—(n2+1)w2>

—22 z z
= P P —
—22+(W1 +WQ)2 2 (w1 +WQ> 2 ( w1 +w2)

e () m o) I G e ()
ni1wq niwq -1 NaoWwao 510

ni=1 n2

9 i z z s z z
1-— 1 1-— 1
< H ( nlwl) ( + nlwl) Hl ( ngwg) ( + nng)

ni=1 no

. Tz } Tz
sin{ — |Jsm|— ).
w1 %)
TZ Tz

Sy(2,w)Ss(—2,w) = ¥4 sin (—) sin (—) (2.1)

w1 %)

I

1%

Thus we put

and will first prove that the polynomial Q)(z) is a constant. The periodic property of So(z, w)
([KK2, Theorem 2.1(a)])

-1
So(z + wi,w) = Sao(2,w)S1(2,ws) " = Ss(2,w) (2 sin lz)

%)
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shows that

So(—2 — wy,w) = Sa(—2,w)S1(—2 — wy,wn) = Sa(—2,w) (_QSm M) .

Wy
Substituting z + w; for z in (2.1), we have
_omz\ 7! . m(z 4 wr) Qtw) g i (TZY oo [(T(2 +w1)
So(z,w) [ 2sin — So(—z,w) | —2sin —— | = —e Y4gin [ — | sin [ —— ],
WQ Wz wl WQ

namely

SQ(Z,W>SQ(—Z7Q)) — eQ(z+w1)4Sin (W_Z) sin <7T_Z) '

w1 %)

Thus we have e??) = Q=<1 for any z, which states that @Q(z) is a constant.
Next we put

So(z,w)Ss(—2,w) = 4C'sin <E> sin (—> (2.2)

w1
and will prove that the constant C'is equal to —1. We consider the special value at z = wy /2.

First by [KK2, Remark 2.2],
S, (%w) — V3, (2.3)

and again by the periodicity we have
52 (—ﬂ,W) :SQ (ﬂ,(k’) Sl (—ﬂ,wl) :2\/58111 —@ .
2 2 2 w1
Hence (2.2) shows that C' = —1. 1

Remark 2.3 The formula (2.3) is an example of algebraic division values of multiple sine
functions. Since the proof of (2.3) is omitted in [KK2, Remark 2.2] we give a proof here. By
definition

S <%,w) = Lo (% —|—w1,w)'

F2(%7 UJ)

Here the periodicity of I'y(z,w) in the form
Po(x + wy,w) = Doz, w)l (2, wp) "

w w -1
S (Fw) =1 (Fe)

Fl(l’,W) =

gives

Then the formula

originally due to Lerch implies (2.3).

13



Proof of Theorem 1. The statements (1)-(3) are proved in [KK1], since the main theorem
of [KK1] shows that ((s,F,) ® ((s,F,) = (,4(s) indeed. We recall that the main ingredient
for the proof of (1)-(3) given in [KK1] is the following signed double Poisson summation
formula.

Proposition 2.4 Let H(t) be an odd function in L*(R) with H(t) = O(t™2) as |t| — oo,
and put

H(u) = / H(t)e™dt.
Assume both a/b and b/a are generic and that the test function H(t) satisfies
fi(z) = O(u") (2.4

as x — oo for some 0 < pu < 1, then we have
m n 1 m n
3 fan () 3 (S (o) + (o))
_ —i—i%cot @%) H(ma) — % Y cot (ﬂ;) H(nb) — ;%ﬁ'm). (2.5)
Here we say that a real number « is generic if and only if
Tim [|mal|" =1,
where we put ||z]| := min{|z —n| : n € Z} for x € R. For example:

(1) If a € (QNR) \ Q, then « is generic.

(2) Let 7,y € QNR. If a = }Z% ¢ Q, then « is transcendental and generic (Baker [B,

Theorem 3.1], Baker-Wiistholz [BW]).

1 1
ogp and 0g4q

log q log p
notice that this property is used even for the proof of convergence in Theorem 1(0): see

KK1].

For our purpose we use the genericity of for distinct primes p and ¢q. We

14



Now we prove (4). By [KK1, Theorem 2|, which is obtained via the above signed double
Poisson summation formula, we have for Re(s) > 0

] 2T 2T
Sy | is, | —, ——
( (bgp log q))

1 1 logp\ _ 1 =1 logg\ _
— _ _ t ms _ _ ns
eXP <2imzmco (Wmlogq) 2 gn < q

logp

+ %log (1-p°)+

is*(log p)(logq) , 1 logp | logg
1 1 — 3
* 8m 4(0gp—|— 0gq)s+12 <logq+logp+ ))

isQ(logp)(logq) 1 logp logq
pr— - 1 1 '
Cpa(8) €xp ( . + 7 (logp +logq)s + 5 (logq T ioap T 3>)

As (,4(s) has a meromorphic continuation to all s € C, we also have

) 2w 2w
So | —is, | ——, ——
< (10gp log q))

G u(—s) exp (_iSQ(logp) (log q)

log p
| | — +3 )
8T 4(ng+ ogqs—l— log q logp ))
Therefore

, s T 27
Cpa(8)Cpa(=s) = 5 (Z <logp logq)) (logp logq>

i

(- )

eXp( (logp (log q) _% <logp logg ))
S )

log g logp
2
- S, (s, il
logp logq

27
log P logq
R (7 (i )
exp + + )
( (log q)* (logp) (logp)(log q)
Hence it suffices to show that

2 2T 21 27 s s s s
Sy (i Sy | —i 2 ) ) = (pr —p ) (g3 — g 3).
2(28’ (10gp’logq)> 2( " (logp’logQ>) b2 —p)@* — )

This is proved in Lemma 2.2. 1

Proof of Theorem 2. The idea of the proof is the same as the previous one. Properties (1)-(3)
are shown in [KK1]; they easily follow from [KK2| also. Hence it is sufficient to prove (4).

15



We first have an expression

3 " ) | -
Cpp(8) = 52 (Z ngs) exp (Z( 0g7) g2 — ngs B m) .

o 8T 2 12

Then we have

ilogp ilogp i(logp)? 5mi
Cpp(8)Cpp(—5) :S2< or 5) Sy <— or S | exp TSQ—? )

So using

Sa(2)S2(—2) = (Sa(1 + 2)S1(2))(S2(1 = 2)Si(~2)) = —Si(x)?,

tlogp 1logp 1logp 2 a2
—_ = — pu— S 1 —_ 8 .
SQ ( 27‘(‘ S) SQ ( 27T S Sl 27T S D ( p )

we have

Proof of Theorem 3. We use the following result of [KW2].

Proposition 2.5 Let (.(s) = [[,exp (Li.(p~*)) for an integer r > 2, where Li,(s) =
S%° Y s the polylogarithm of order v. Then (.(s) is analytic in Re(s) > 0 with the

n=1 nr
natural boundary Re(s) = 0.

Remark 2.6 (;(s) is the Riemann zeta function.

Lemma 2.7 The relation between Z(s) and (o(s) is given by

zZ', . is (G ¢
70 =5 (g) ©-to
Proof. From .
log (a(s) = Z Z ﬁp_ms
we obtain % |
08P —ms
C_z(s) = ; Zm: - P
and

<%)/ (=2 %:ﬂogp)%‘m?

16



On the other hand, from

o8 200 = 32 5 = 35 (1 S

we get
+> ) (1 - “;%p8> (log p)p~™*
-
_ ZZ( “ng )(log pp

Hence we have

g(s) = _;—iZZ(logp)gp_ms —i—ZZ(lng)P
i (GY
a <C2) (5) = C( )
1

From this lemma and the result of [KW2], we see that Z(s) is analytic in Re(s) > 0 with
the natural boundary Re(s) = 0 since

(g—i)ls):; Sty (%)Yms)

has double poles at essential zeros of ((ms). The above equality is proved as follows. Let
¢(s) =>_,p~°. Then it is well-known that

Z #(n) log ¢(ns)

n
n=1

17



Hence

log Ga(s Z Z mgp

Thus

G g ms
5( Z ZM C< )

(&)

and

1= Sutn ) () ons)

m=1 \ n|m

3 Signed Double Explicit Formula: Proof of Theorem
4

Lemma 3.1 (1) Let M and N be distinct integers larger than 1. Then

|log M —log N|™* < 2min(M, N) <2V MN.

(2) For prime numbers p, q and positive integers m, n satisfying p™ # q" we have

|mlogp — nlog q\_l < 2min(p™,¢") < 2pm/2q”/2.

(8) Let M and N be distinct positive integers. Then

max(M, N)

log M —log N|7! <
| log og N| M —N

18



Proof. Since

M N+1
log - > log ; zlog(l—l——)

for M > N +1 and

] M<1 N-1_ log [ 1+ L
By =T8Ty T T8 N_—1

for M < N — 1, we have

logM‘ > min{log(l—l—l),log(le;)}
N| — N N -1
| 1
- o1 )
1/N du
- /0 1+u

/1/N du

> -

0 2
1

2N’

Hence
|log M —log N|™* < 2N.

By symmetry we have also
|log M —log N|™" < 2M,

This proves (1). Then (2) is the case M = p™ and N = ¢" in (1).
Finally we show (3) in case of M < N:

N— M\
|llog M —log N|™' = —(10g(1——))

N

(&1 N - MmN

- (25
N

S NoM

by taking the term with k& = 1, since all other terms are positive. 1

Proof of Theorem 4. Let Dy be the region defined by
Dr={seC||s| > a, |[Re(s)| < a, 0 <Im(s) <T}.

19



By Cauchy’s theorem we have

! !

; ; __1 s1+ s é;3 é;s s1ds
R 18 M LCE TS T JCATAVE R

0<Re(71),Re(y2)<T

where the integrals along 0 D7 are taken counter clockwise. Considering the limits as T" — oo
in the both sides of (3.1), we have

/ /

) ) —L S S és és S1as
> i) = [ ne s e edndn, (62)

0<Re(~1),Re(72) § ¢
where
D ={se C||Re(s)| < a, |s| > a, Im(s) > 0}.
We decompose 0D = C7 U Cy U C5 with

C1 = {s€0D|Re(s) = —a},
Cy = {se€dD||s| =a},
C3; = {s€0dD|Re(s)=a}.

We compute each double integral I;; = m I, fcj in (3.2).
First we treat the integral along the vertical lines. We compute

]33 = ﬁ/o A h(QO{—f—Z(tl —f—tg))%(a—f—ltl)%(ﬁ‘f‘ltg)dtldtg
1

= m/oooh@aﬂt)/o %(a+it1)%’(a+i(t—tl))dtldt

and

0 0 é‘/ 6/
//h(—2a+i(t1—I—tz))g(—a+it1)g(—a+z’t2)dt1dt2

1
4 /o Ju
1 0 . t 5/ . 5/ .
R/ h(2a+zt)/0 E(Oé‘i‘ltl)g(a‘ﬂ(t—tl))dhdt.

[e.o]

20



Hence

I+ I3 = ﬁ Z h(2c + it) /Ot %(a + itl)%(a +i(t — t1))dt,dt (3.3)
= ﬁ/ih(?aﬁwt)

(/Ot%(a+%+z’t1)%<a+%+i(t—t1)>dtl (3.4)

+/Ot%<a+%+it1)%(a+%+i(t—t1)>dt1 (3.5)

+/0 g (a + ; +zt1) % (a + % +i(t — t1)> dt, (3.6)

t C/ 1 ) / 1 ]
+/0 Z (a+§+zt1) Z <C¥+§+Z(t_t1)) dtl) dt. (3.7)

The contribution from (3.4) is equal to (1.8). Next we compute that both (3.5) and (3.6)

are equal to
= logp fzmt ' imt’ F;E{ 1 -/ /
_E § e Op _FR 04—|—§+zt dt’.

pmlp

Thus we have (1.6).
The contribution from (3.7) is calculated as

L lng lOg q / H —mt / —matq qm't1 dtldt

2 +3 +3

Z'(pfmitqnit o 1)

When p, g, m, n satisfy that p™ # ¢", the integral on ¢; is equal to , and
mlogp —nlogq
the summand is
1 1 .
08 P08d / H,(t) (p~™it — g7t dt. (3.8)
pmet2)geta) (mlog p — nlogq)

In case p™ = ¢, which means p = ¢ and m = n, the integral on ¢; is equal to ¢, and the

summand is | ) .
(ogp)” / tH (t)p~™ dt. (3.9)

p2m(a+ %) o

21



Thus the total contribution from (3.7) to (3.3) is

i log plog g <N . )
dn? mnlog( 7y pr(act3) gnlat ) Ho(—mlogp) — Ho(—nlogq)
mLgn

N

47722 10gp2 o(t)(=mlogp). (3.10)

Thus we obtain (1.2), (1.4) and (1.5). Here we notice that the absolute convergence of (1.2)
follows from Lemma 3.1.
We calculate I13 and I3; to have

00 t ¢ !
Liz+ 13 = 4—71T2/ h(it)/o %(Ox—f-ih)%(a—i(t—tl))dtldt

1 o
= m . h(Zt)

A 1\ Tk 1
(/0 Tn <a+§+zt1> Tn (a+§—l(t—t1)) dt, (3.11)
+/0 E—E (a - % +z’t1) % (a + 5 -t - tl)) dty (3.12)
b 1 \TIk .
+/0 ¢ (a+§+zt1) Tr (a+ —Z(t—tl)) dty (3.13)

+/tcl +1+'t ¢ +1 (t —ty) | dty ) dt (3.14)
; C (0% 5 (251 C « 5 1 1 1 . .
We find that (3.11) is equal to (1.9). Next (3.12) and (3.13) are computed as

logp o] t ) . F/ 1 .
3.12) t im(t—t) _ R - t') dt'dt
( 47-‘-22; Tn(ozJr / 0()/0p FR Oé+2+l

and

logp o] t i . 1-\/ 1 .
3.13) t im(t=t) _R — —qt’" ) dt'dt.
( 477'2 Z; nz(ozJr / 0( )A p FR o+ 9 7

Thus (3.12) + (3.13) is equal to (1.7). Finally by taking into account that Hy(t) is an odd
function, we have (1.1) and (1.3) from (3.14).

We write the remaining integrals as Iy + I}, — Iy with Iy := Iy + Iy + I53 and [}, =
L5 + Iy + I3, and first calculate I5:

[2 = L (L /8D h(Sl + Sﬁ%(sﬂdsl) %’(SQ)dSQ

211 271

= / Z h(iyy + s2)= 32)d52,
2mmi Cs
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where 7; runs through the nontrivial zeros of ((s) with Re(y1) > 0 and |Im(y)| < a.
Putting s, = ae®, this together with I} makes the term (1.10). Finally the integral I,
becomes (1.11).

1

In the next corollary we split (1.3) into partial sums over m # n and m = n, and combine
the former with (1.1). We also combine (1.2) and (1.4). Put o = § + & with § > 0.

Corollary 1 For § > 0 it holds that

Z Ho(v1 + 72)

Re(m1),Re(v2)>0

i log plo 1 —~ —
= Y Pl (Ho(=mlogp) + Ho(—nlogq) ) (3.15)

A2 S log(pmqn) pm(1+5)qn(1+6)
p#q"
1 logp —~
T i ) Z () 1 (—=mlogp) (3.16)
p m=l1
+ = Z og(E2) pr ) gnies) (H#(—mlogp) —H%%(—nlogq)> (3.17)
2#7242 Og qm p q
1 oo
+ m (log p)? Zp m(1+9)( tH1+25( ))(—mlogp) (3.18)
m=1
1 °° log p / / Iy .
- — Husas (t mE-D_R (1 L § 4 4t')dt'dt (3.19)
pm 4)
272 £ 1 Hm(1438) I'r
1 Oo log p m—) LR ., ,
- Ly 33 > ety / Hot / ( Lo+ it) ) ar (3.20)
Tk 'y ,
+ 47‘(‘2 H1+25 F (1 + ) + Ztl)a(l + ) + Z(t - tl))dtldt (321)
F’ I}
+ W Ho(t)/ 2 (1+6+zt1)F—R(1+6—z(t—t1))dt1dt (3.22)
R R
1 —i— 2(5 ¢ o
- > h(iv+ (3 +6)e ) ((% + 6)e?)e? do (3.23)
0 Re(v1)>0
(1 +26)* o oo & 0, & 02\ i
BT / / 0y (% +d)e 02)%((% +d)e 91)%((% +6)e)e (01102) 40, db,,
(3.24)

where the sum in the left hand side is taken over pairs (% + i1, % +iv,) of nontrivial zeros
of the Riemann zeta function, p,q denote prime numbers, and m,n € Z, m,n > 1.
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4 ¢ (s): Proof of Theorem 5(1)

The goal of this section is to calculate the factor ¢, (s) of the double Riemann zeta function
for distinct prime numbers p and g. The case p = ¢ and those involving infinite places will
be treated in §5-§7.

We assume Re(s) > 1+ 2§ for 6 = a — 3 and take the test function h(t) as in (1.12).
Then

o) = 1 1
VT (it 1425+ 8)2 (it + 1426 —s)?
~1 1

(t—i(14+25+s))? * (t—i(1+25—9))?%

and we compute for z < 0 that
Hiws () = / Hooas ()6t dt
2 S 2
= _27TiReSt:(1+25—s)i(H1+T% (t)em)

o —x(14+20—s
= 2rze ™ ),

where we considered the integral along the lower half circle since |e™| = ¢=*'™ and z < 0.

Lemma 4.1 Let 1/2 < a < 1. For distinct prime numbers p and q, the (p,q)-Euler factor
of ((s+3,Z) ® (s + 3, 2Z) is given by

exp (i 3 (log p)(log ¢)p~™"*q~

i (mlogp)? — (nlogq)?

m, n

n/2

(Cosh(ma log p) N nlog g sinh(malog p) ~ mlogp sinh(nalog q) B cosh(nalog q) )
pmsqna m log D pms qna n 10g q pmaqns pmaqns

where the sum is taken over all pairs of positive integers m and n, and is absolutely convergent
for Re(s) > a — 3.

Proof. Put

S S 82
L(s) = 1-— exp ( + ) ,
(5) pll_p[2 < p1+ Pz) pr+p2 2(p1+ p2)?

Im(p1),Im(p2)>0

where p; and p, run through the upper half zeros of £(s) = (s + 5)- Then we have by
definition
L(s)

mQ(S)‘QG(S +1) (s —1)s*(s + 1) (4.2)

(E@&)(s) =

24



with

ORI (1—§) el

p:¢(p)=0
Im(p)>0

being the half Riemann zeta function introduced in [HKW]. In fact, from

Z(s)

626

with

we have

Iy
—
»
N~—
®
A
—~
»
~—

12
—~
N
—
—
»
~—
®
N
—
—
V)]
N~—
~—
X
—~
N
[\
—
»
N~—
®
N
—_
—
»
~—
~—
&
X
—~
N
(=}
—
»
N~—
®
N
—
—
»
N~—
~—
&

with

I

1 G [ P P14
»
|
—_

If we put (£ ® £)(s) = e'*) and
M(8) = G (5) 20 (5 + 1)2(s — 1)52(s + 1),

it holds that

Fr(s) = % (%(—s) + %(s) + %(3)) |
In other words we have
(G4 Te) = e - 2500 (4.3



Then the left hand side of Corollary 1 is equal to that of (4.3). Thus it is equal to the
right hand side of Corollary 1, among which the terms (3.15) and (3.17) produce the desired
factors in the theorem. Now we compute that

(3.15) + (3.17)

_ i 3 (logp)logq) [ Ha(=mlogp) — Ha(—nlogq) , Ho(=mlogp) + H(—nlogq)
472 = pm(%—ka)qn(%—&-a) mlogp — nlogq mlogp+ nlogq :

pM#q™

The terms in the big parentheses are equal to

1 — —
Ho(—ml Hy(—m] 1
(mlogp — (nlogqg? < <( a(=mlogp) + Ho( mogp))m ogp

+

(
-
(

a(—mlogp) — PAIB(—mlogp)) nloggq

PR

(—nlogq) — Ho(—nlog Q)> mlogp

Ho(~nloga) + Hy(~nloga) ) nlog q).

Hence
(3.15) + (3.17) = — 3 (log p) (log q)p~™(3+e) gn(5+)
| ' N 27(7/ p,m,q,n (m 1ng)2 — (n ]_0g q)2
pM#q"

(mz(log p)’p " (p*™* + 1) + m(log p)n(log q)p~ ™ (p*™* — 1)

—m(log p)n(log ¢)g~"*(¢*"* — 1) — n*(log ¢)*¢ " (¢*"* + 1))

B Z (log p)(log q)p~™/2q"/?
i g (mlogp)? — (nlogq)?
q™
cosh(malo sinh(malo
(mz(logp)2 (ms mgp) +m(log p)n(log q) (ms mgp)
pq pq
sinh(nalog g cosh(nalog q
—m(log p)n(log Q)% — n(log Q)2% :
g pq
Integrating twice leads to
Z (log p)(log q)p~"/>¢~"/
mpqmn (mlogp)? — (nlogq)?
(cosh(ma log p) L log ¢ sinh(malogp) mlogpsinh(nalogq)  cosh(nalogq) ) (4.4)
pms qna m lOg P pmsqna n lOg q pmaqns pma qns :
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which is a factor of the double zeta function. »
If we shift the variable as s — s — 1 in Lemma 4.1 we get the factor in Theorem 5(1).
Now we show the analytic continuation of (¥ (s) for all s € C. For Re(s) > 0 and 3 > 0,

let
_ logplog q —ms —nf
gppﬂ(S,B) — Z (m lng)2 _ (’I’L log q)2p q )

m,n

and

o (log q)* —ms ;—nf
Upa(s, 0) = ; m (mlogp)? — (nlogq)®’ 1

Then we have

. 1 11 11
oq(8) = exp 57 | Pra s+a—§,oz+§ + ©pq s—a—é,a+§
1 1 1 1 1 1
—Upg s+oz—§,oz+§ + Uy q s—a—é,a+§ + ©gp s+a—§,a+§

1 1 1 1 1 1
+©Yqp s—a—i,a—i—i — Ygp s+a—§,a+§ + Vg p s—a—§,a+§ .

Hence it is sufficient to show that ¢, ,(s, 3) and 1, ,(s, §) are analytic in s € C.
For a generic o € R and any 3 > 0, we put

—ms ,—nf

p g
Lnalss 0 0) = 250

in Re(s) > 0. The absolute convergence is easily seen from the genericity of ov. Moreover,
the integral expression

! dv
Lnglsi ) = /0 (p* —v)(¢Pve = 1)

gives the analytic continuation to all s € C. This equality is shown as follows:

1 d/U /1(00 1> (OO >
- —ms, m— —nf,,—na
e a2 IO SPRE P
/0 (p* —v)(¢Pv* = 1) o\t ne1
1
= D e / v d
m,n 0

p—msq—nﬁ
N Z m—no
m,n
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Hence if we see that

log q log q log ¢
90;),(1(376) = - 9 (Lp,q< aﬁ +Lp,q 3;_10gpaﬁ

log q log q log q
%,q(sﬁ) = _T (Lp,q (5; @75 - Lp,q S — o gp’ﬁ

then we would have the analytic continuation of ¢, (s, 5) and v, ,(s, ) for all s € C. To
prove these identities notice first that:

1 1 —ms _—n,
Lpg(si0,8) + Lypg (s;—a, B8) = Z(m * )p g’

and

— no m —+ no

_ 2m —ms _—nf
- Z m? — 22l 4
and
1 1 —ms _—nf
LP#Z (S; avﬁ) - LP#I (3; —&,5) = - p q
c~ \m-—na m + no
— Z 2na —ms —nf
m2 — nzazp q -
Thus
/ L m(logp)?log q s —nd
#al ) = ; (mlogp)? — (nlogg?” *
log q 2m —ms. —nf
-9 ZmQ_n?(lOﬂ)Qp q
m,n logp
log g log q logq
and
n(log q)* log p B
! —  _ ms,_—n
(CSMENE) Z (mlozp) — mlog g2’
log q
logq 2n logp) —ms ,—nf3
- Z (@)219 q
logp

log q log q log q
= ——2- (L P —— .
2 ( bp,q ( ) 7ﬁ P,q 87 logp’ 5

This completes the proof of the analytic continuation of ¢, (s).
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5 (;,(s): Proof of Theorem 5(2)

The (p, p)-factors are the sum of the contributions of four terms (3.15)-(3.18) in case of p = gq.
For (3.15) and (3.17), we compute in the same way as in the previous theorem to get by

putting p = q

1 pf(m+n)/2
ex -
p %) m?2 —n?

m#n

(cosh(ma log p) N n sinh(malogp)  msinh(nalogp)  cosh(na logp))>

pms+na m pms—i-na n pma—i—ns pma—i—ns
p n( +a) n
=exp | — ; — <cosh(ma logp) + - sinh(ma 1ogp)> .

The shift s — s — 1 gives the first line (1.13).
Next we calculate the contributions from (3.16) and (3.18). By taking the test function

(4.1), we compute
)2 s +2(149)),
(3.16) = 5 Z Z (log p)p

p m=l1

Thus

// (3.16)dsds = — ZLl ~(sHt2a))

The shift s — s — 1 leads to the last term in (1.14).
Next the calculation for (3.18) shows

1 2 —m(s+1)
(3.18) = 5 — ) (logp)* > (14 (s —1—25)(—mlogp))p :

where we compute

By partial integration

_ L 2 = 1 1 —m(s+1) / —m(s+1)
/(3.18)0[5 = 5 d (logp) Z((——mlogp+s 1 2(5) p ds

1

- l 2 _ 1 _ 2 —m S+1)
i 2 (log p) ;(s 8)p



Hence

1 L [s5—1-26 1
3.18)dsds = -— Y (logp)* Y (T 2y _/ —m(s 1) g
//( Jdsds 2mi > (logp) — ( —mlogpp —mlogpp °

=1
1 - logp _(s4) 1

- _E E _ ol —m(s —1—=28) — —pmlstD)
27 = ( m 7 (s ) m2?

= - ((logp) (log (1 — pf(s+1))) (s — 1 —28) — Liy (p—(sﬂ))) _

Thus we determined the form of (& (s). The analytic continuation of (7 (s) is given as
follows. We decompose ¢, (s) into two parts

Cop(8) = Z1(8)Za(s)
with

m s—%)—n(a—i—%)

2 —m( n .
Z1(s) = exp (E Z p —— (cosh(ma log p) + P, sinh(ma logp)>>

and

Za(s) = exp <% ((s = 1= 20)logplog(1 —p™*) — Lia(p™*) + Liz(p _s_m))) |

We start with Z,(s) since it is treated directly by Theorem 2. In fact,

1
exp (—QLmLiQ(p_S)) = gp,p(s) eXp <_ (1 + ;if$> log(1 — p_s))

and

L . o _ log p —s—2a
exp (Q_MLIZ(p 2 )) = (pp(s+2a) exp ((1 + Qiz‘ (s + 2a)) log(1 —p—*2 ))

imply that

229 = G516l + 200 exp (= (14 521+ 20) ) g1~ )

1
+ (1+ — (s+2a>> log(1 —p”a>>,

Y

50 Zs(s) is analytic in s € C from Theorem 2(1).
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Next we look at Z;(s). For Re(s) > 0 and 5 > 0, let

p—ms—n,@
w0 =2 e
m#n
and 5
B ﬁp—ms—n
¢p(suﬁ) — Z me o ng'
m#n
Then we have
p (S) Z p é —n(a+s ) pma +p—ma N ﬁpmcu _p—ma
! ! ot —n? 2 m 2

1 1 1 1 1
= exp - Pp s+a—§,a+§ + @y s—a—é,a—l—E
1 1 1 1
+¢p(s—a—§,a+§)—¢p<s+a—§,a—l—§))>.

Hence it is sufficient to show the analyticity of ¢,(s, 5) and ¥,(s, 3) in s € C. Now, putting

ZP

m#n

—ms—nf

and
p—ms—nﬂ

n m-+n

we see that

_ 1 ms—nf
m¥#n
1
=~ (L (s,8) + Li(5.8)

and

o —ms—ng
w;(57ﬁ> _ Z n(logp)p

m#n

= P (1 (s, 0) ~ Li(5,5))




Thus our task is to show that L (s, 3) and L; (s, ) have analytic continuations to all s € C.
We show the needed analyticity by giving the following expressions:

_ 1 1—p°
L,(s,B8) = mlog (1 —p—ﬂ>

and

1 1
Ly (s,8) = 3 log(l = p™" ) &+ g5 log(1 —p ™) +

1
- - _ B
7 — 7 log(1—p~").

1

These expressions are obtained by direct calculations:

G - T

and

g —(-1)s _ —0-18
- 5 log(1—p~ )

-
— P~ —p
p” -~

_ p _ 1 e
= —log(l—p*° —I——logl—pﬁ —i——logl—psﬁ
ol =) Lo ) + 5 log )
1

1
_ 50 =S
= 3 log(1—p™*7") + —— e log(1—p~°) +

1 -

L—=p
Thus we proved the analyticity of ¢ (s) for all s € Caa

Remark 5.1 We must distinguish L (s, 8) from “L,,,(s; 1, 3)” carefully. In fact “L,,(s; 1, 3)”
diverges.

32



6 () (s): Proof of Theorem 5(3)

We calculate ¢ (s), and moreover we describe the analyticity and possible singularities of

I1, Cproo(8)-

We first deal with (3.19) by using the formula

Iy 1 S 1 1
"Ry _Zloomr— L — = R
G S L R 2 <s+2k: Zk)

k=1

with v the Euler constant. We begin with the calculation of the integral on ¢ in (3.19):

t ) P/
/p“m R(1+6+it)at
0

= ——logm — - — ———— — - — . .
0 ! 2 T T T ot & \1+o+it +2k 2k

We divide the integral (6.1) into three parts. First we compute

Lo 1 1 imt 1
/p””t ——10g7r—z dt’ = ——log7r—2 d
0 2 2 2 2 ) imlogp

(6.2)

Secondly we have by putting t" =1+ + it/

/t pimt’ dt/ B /zt+1+5 mt” 1-6) dt”
o 1+6+it" i

it+1+6 00
_ Z/ l/)n 1dt//

t+1+0 (it +140)" — (14 0)"*!
— i(aologz+ + ZanHZ Tt )n—|—1< +9) )6.3)

with the expansion p™*' =179 = 3" g (#)* with a,, = p™~1= (mlogp)"/n!.
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Next we calculate by putting t” =1+ 6 + i’ + 2k

L 1 1
1mt /
— — — ) dt
/p Z(1+6+it’+2k Zk)
_ _Z - /2t+1+(5+2k (' 15) 1 _i di//
v 2%k) i
('

14+0+2k

ok it+1+0+2k - )
— —Zm. n // n— dt”
zp za / (- 5F)

14642k

it+1+6+2k & ap\ [UHitotk
= izp*%nk (ao log + Z <an+1 _ _) / (t”)ndt”
- 146+ 2k oh

—r 14-5+2k

o= ok it+1+0+2k < < an>(z’t+1—|—5+2k)"+1—(1+(5+2k)"+1
— ] . :
i)y (“0 BT o+ 2k +nz_0 1 9 ntl
(6.4)
By (6.2), (6.3), (6.4), we deduce that (3.19) is equal to
i OO log p i (1 7\ pmt —1
- — Hiio im —1 —
272 p m— 1 1+5)/ sl ((2 BTy mlog p
A it+1+0+2k (it + 14§ + 2k)" L — (1 + 6 + 2k)"+?
1 n dt
+Zp (ao T 5 1 2k +nzzoa”“ n+1

with ano = anq1 and a,p = @y — 5¢ for & > 1. For avoiding the singular point ¢ =
i(1 + 6 + 2k) in the log term, we calculate the integral by integrating along the lower half
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circle. It encircles the double pole t = —i(s — 1 — 26) of (4.1). Thus (3.19) is equal to

- Z i ogp o p™ L -
— R t=—i(s—1-25) (t+i(s—1—20))2 2 & 2

D mlogp

T+ 14042k — it + 140+ 2k)"H — (1 + 6 + 2k)"+?
—I—Zp_2mk<aologz T14+0+ +Zan,k(Z + 146+ 2k) (1+ 6+ 2Kk) ))

1+0+2k — n+1
o0 1 d ) imt __ 1
iyl dl (L ]) 2
p m= 1 ttf i(s—1-24) mlogp

_ t+ 14042k (it + 1+ 0+ 2k)" T — (14 8 + 2k)"H!
2mk 1 ¢ .
+Z_:p <a0 o5y E Tk n+ 1

m(s—1—26) 1

=, logp , 1 P —
— —ZZ mg <—2m(logp) ((§logw+%)Tgp

pml

§—0+2k (5 — 8+ 2k)" L — (1 + 6 + 2k)"+!
+Zp ( E T 5ok Z”’“ n+ 1

. 1 T m(s—1-26) —2mk o
+Z<(§log7r+§)p —l—Zp T—l—m{?—i_zank S—5—|—2k)

k=0
- logp (1 v , Comk. S —0+2k
T Zmz g ( (e +3) —omtiesi Zp O 2k (65)
N ok~ (85— 04 2k)"F — (146 + 2k)" !
—im(log p) Zp Zanﬁk —— (6.6)
k=0 n=0
S —2mk Qo - n
- _ 2 . ]
—szzop <5—5+2k+§a"’k<8 o+ k:))) (6.7)

We compute the sum over p and m in (6.5)-(6.7). Since

ZZ logp

and

(6.5) is equal to

(Lo 1) Sy S (€Y =0+ 2
= (<§logﬂ+§>z(3_5)+ 0(2) (S+2/€+1)10gm>- (6.8)



As we also have
dr C/ T © m’ logp r+1
ds’ C <8) : Z Z

p m=1

(6.6) is equal to

—i m(log p)? Com an\ (s =0 +2k)" " — (146 + 2k)"*!
?ZZWZ ”Z(nﬂ 5) —

p m=1

i o = (5= 6+ 2K) T — (14§ 4 2k)" !
n+1

r
k=0 n=0
1 n+2 logp n+3 n+1 logp n+2
R I) B e P I Pw
p
Zii (s — &8 + 2k)"*1 (1+5+2k:)”+1

n—+1

=0 n=0

nt1 (n+2) 7\ (D)
(25 e G () omes).

where we used the convention that a,/2k = 0 if £ = 0. Finally (6.7) is

EES S e (g St a ey

pml k=0

3 = logp 2 1 — ((mlogp)™™  (mlogp)™\ 0
= ZZ ) 2 s—5+2kz+; (n+ 1) 2k ) 802K

pml

|
- _Z<S_5+2kzz m(?—if—l—l
n+11 n+2 1 o 1 n—l—l
Y R (TP M I CEE b B ok e )

_ i -1
= ;k, (mg(s+2k+1)
= 0 N\ (n+1) et N (n)
s ({2 () e -G () emen)

(6.10)
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Integrating (6.8)-(6.10) twice gives a function in s which is analytic except at s = § — 2k
(k>0), 2k (k>0), -1—-2k(k>1), —1+p—2k (k>0),6+pand § + 1. Writing in
terms of a = % + 0 and the shift s — s — 1 lead to possible singularities at s = % -2k +«
(k>0),1—-2k (k>0), 2k (k>1), p—2k (k>0), §+p+aand +a.

Treating (3.20) similarly we have singularities of [, ¢ (s) at s = 5 =2k —a, 3 ltp—a
and S —a.

7 (% .(5): Proof of Theorem 5(4)

Lemma 7.1 We have the following formula on an indefinite integral:

1 é (log <1 + %x) log x + Lis (—%x)) +C <|x| <
/ ogw da
ar +b

1 b b 1 2 b
(log (1 + —) log x — bLisy (——) + (log 2) ) +C, (|:z:| > |- )
ax ax 2 a

where a and b are nonzero complex numbers. In particular it is an analytic function in x
except at x =0, —b/a.

Q|
~_

Proof. We first note that for |z| <1
d d K2k Ko R log(1 — z)
a2 = dg;z;la P Dy v
Hence when |z| < |2, by differentiating the right hand side of Lemma,

s = (e (10 ) 1 L ()

dx a\1+¢ b —3T b
_ logx
ar+b
We similarly compute for the case |z| > |2|. 1
Put ]
— =1,2,3
2n (n=123.)
En =
logm v

—5 T3 =0

and we use the expansion




The integral on ¢; in (3.21) is

[e.9]

' & 1 1
. | — e | dt.
/OHZ:;(Qn+1+5+@'t1 €>Z(2m+1+6+z(t—t1) © ) !

m=0

The quadratic term in ¢; is calculated as follows:

! 1 1
dt
/0 M+ 14+04it, 2m+1+06+i(t —ty)

1 ! 1 1
— dt
2(m+n+1—|—5)+it/0 (2n+1+5+it1 +2m+1+5+i(t—t1)> !
—1 n+14+0+1t 2m+149
- — log ;
2(m+n+1+9) +it 2n+1+9 2m+1+0 +it

—i it it
1 1+ — ) (1+——) ).
2(m+n+1+6) +it Og(( +2n—|—1—|—(5>< +2m+1+5))

Its contribution to (3.21) is

1 [ - —i it it
— Hios (t 1 1+ ——— | (1+———) |t
47r2/_oo 35()7;”: 20m+n+1+6) +it Og(( +2n—|—1+(5>< +2m+1+5))

,n=0
1
t—i(1+20 —s))?

. —i it it
1 1+ — 1+ —
mzn;o?(m+”+1+5)+it Og(( +2n+1+5)( +2m+1+5)>
-1 d - 1 it it
1 14+ — 14—
t=z‘(s125)m;:02(m+n+1+5)+it og(( +2n+1—|—5>< +2m+1—|—5>)

—ii - tog (14— ) (14 -—L
27 (2(m+n+1+9)+it)? s 2n+1406 2m+1+0

—1
= —ReSt:_i(s—1—25) (

2T

o dt
m,n=0

1 7 1

+2(m+n+1+5)+it(2n+1+5+it+2m+1+5+it>)t_i(s_l_%)
-1l o —i oo (14 32 1=20\ (1 s-1-2
2w A= \(2(m A n) + 1+ s)? & 2n+1+46 2m 4+ 149

n 1 1 n 1

2m+n)+1+s\s+2n—-0 s+2m—0

e d 1 oo (14521220 (1, 5-1-2
B 2m = ds \2(m+n)+1+s & 2n+1+0 2m+1+4 '
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Thus

/(the quadratic part in (3.21))ds

oo

_—_iz 1 o 1+3—1—25 1+s—1—25
2 02(m+n)+1+sg 2n+1+46 2m+1+46) )"

m,n=

By putting z =1 + ;;iﬁ‘;, it follows that
1

s—1-—20 log x
1 1 = 7.1
2(m+n)+1+sog< +2n+1+5) ar +0b (7.1)
witha =2n+ 1446 and b =2m + 1+ 6. By lemma 7.1 its indefinite integral is analytic in
s except at s = —2n + § and s = —2n — 1. The shift s — s — 1 leads us to the singularities
at s=-2n+0+1and s =—2n.
Next we deal with non-quadratic parts in (3.21). Their contributions to (3.21) are

1 [ t & —& —€
— Hiios (t = = mEn | dtdt
47r2/_oo 1+226<)/0m;0(2m+1+5+i(t—t1)+2n+1+5+z’t1+€ €> !

T[> — 2m +1+0
= — | Hus —ig, 1
47r2/_oo () ) ( S Tl o+t

m,n=0
2n+1+6+14t
Em | mEnt | dt
‘1€, log Mt 140 +55)
—i 1 > 2m + 146 +it
= —Res;—_i(s_1- . en |
o ot=ils 26)(t—z(1+26—s))2m;:0<w oMt 110
pie ] 2n+1+5+z’t+ ;
1€, 1O m€n
& n+1+6
—i d = /. 2m + 146 +it
= — — 1€, 1O
o |,y 0 2, S om+1+6

, 2n+ 140+t
+ie, log + Ement

2n+1+96

- = i e + _Em + Eme
Co2m A~ \2m+14d+it 2+ l4d4+at "

t=—i(s—1—25)
—i —€ —€
= — — + S+ Emen | -
27rmzn;0(2m—5+s 2n—0+s )
By integrating twice, we see that the resulting function is analytic except at s = —2n + 9

withn =0,1,2, ...
This completes the proof of Theorem 5(4) and thus Theorem 5.
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8 ({(s): Proof of Theorem 6

We first deal with (1.10):

- Z /w( 1 1 )5/( i0Y ,i6
s i i 2 (; 0 _ o2 ) ¢\e )e™df.
T o0 0 (17 + e +5)2  (iy+ae? —s)2 ) &

This function in s is holomorphic in Re(s) > % + o, and it has an analytic continuation to
all s € C except for possible singularities on £C'(y) with

C(y) ={iv+ac®|0<0 <7}

Next we deal with (1.11), which is equal to

—a—Q /Tf /7r 1 — ! é:(ozewl)é/(ozew?)(2"(91%2)(19 do
a2 Jo Jo \ (e + ae2 + 5)2  (ae? + ae?? — )2 ) € i3 e

The integrand is a bounded function in #; and 65 for any fixed s, and thus the integral defines
an analytic function for all s € C except for possible singularities in |s| < 2a.
The shift s — s — 1 leads to the desired result.

9 ((s,Z)®((s,Z): Proof of Theorem 7

We first prove the absolute convergence of the multiple Euler product. Then other properties
follow from our previous discussions noting that

((5,2) @ ((s,Z) = (C(5,2) ® (5, Z))(((5,2) @ Tr(5))*(Tr(s) © Tr(s)).
We see the convergence from the following lemma.

Lemma 9.1 Leto > o+ % Then:

(1)

mo
1

ST (log p)(log ¢) P el
p 27 < 00.
|(mlogp)? — (nlog q)?| gn(eta)

2

2) 1 y
n b
§ § (1 2
m< 0g4) |(mlogp)? — (nlogq)?| qn(a+%)p

1

--3) < 0.

In the proof we use the following lemma.
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Lemma 9.2 Leta >0 and w > 0. Then

=1 2
S (a7 < o2 T
. l w

—_

Proof.
> 1 » > 1 —w
— 2—wa—w/2 i l—l—%
=1

= 27w/ (1 + E)
2
1+ 3

w

2
—wa—w/Qw +2
—w .

< 9w —w/2

= 2

Here we used the inequality ((s) < s/(s —1) for s > 1.

Proof of Lemma 9.1. We first prove (1). From Lemma 3.1(3) and the fact that
|mlogp+ nlogq| > 1,

It suffices to prove for o > o + % that

p
A=
pM>q"

m

q—n(a—l—%)p—m(a—a—%) < 00 (91>

and that

Bi= Y gty meed <o, (9.2)
o €

p'm <qn
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since the factors log p, log g, m and n are easily treated by differentiation (or directly). For
proving (9.1) we have by putting [ = p™ — ¢" > 1 and by Lemma 9.2

m

Z p p—maq—nb < Z Z [ + q" —a —nb

mo__ on
p,q,m,np q gn =1

pM>qn
= Z(Z%q +1)” )q_"b

—(a—1) a’+1 —2(a—1),,—nbd
< Ly

_ al)a+1 a21 TL
T

< o0 (9.3)

if “T_l +b > 1 and a > 1, which is equivalently a + 2b > 3 and a > 1. We obtain (9.1) by
puttinga:a—a—%andb:a—i—%.
Next for proving (9.2) we similarly have by putting [ = ¢ —p™ > 1

Z nqn 7ma —nb Zzl+p l+ )

pamm 4 — P

Tl p,m =1
- 1 m —ma

= 7" +) p

p,m =1

b+1 b—1

<

p,m
< o0

if =1 +a>1andb > 1, which is equlvalently 2a +b > 3 and b > 1. We obtain (9.2) by
puttlng a=0—a—: and b=« + . This completes the proof of (1).

By considering %(9.3), we similarly have (2). Hence Lemma 9.1. u

Now we calculate the multiple Euler product expression. From

C(s,2) = (s, Z)Ir(s)

we have

C(s,2) © (s, Z) = ((5,2) ® ((5,2)) (¢(5,2) ® Tr(5))” (Tr(s) @ Ir(s))
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with

Tr(s) @Tr(s) =[] (s+2m+2n)

and
~ -1
((s,Z) ®'r(s) = H H (s +2n) 51)1) ® (H(s—l—Zm))
¢(p)=0 n=l m=0
o H (s—p)® H(s+2m)_1 <H(s—|—2n)® H(s+2m)_1>
é(p) m>0 n=1 m>0
(s—1)"'® ]:[ s+2m)”
m>0
-1
= H s—(p—2m)) Hs—|—2n+m H(s+2m—1)
Im(p) >0 " m>0
2 — 1
o HC+3+2m 1F2 st )Fl S
m=0
Thus

(5:2)0(5,2) = ((:2)©((5.2)) (((5,2) @ Tr()) " (T(s) @ Tr(s))”
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ARG - nGo) RO ()
- ORE) mOn ()
-6 (6 On ()

~ T, (->_1 Ty (s — 1)

where we used the relation

(see [KK2]). Note that

and

Do(z+1)=T(2)lq(z)"
_ I
Fl(l') = \/ﬂ
[o(z) =271

We used also the duplication formula

I, (g) r, (x ; 1> ~ Ty ().

On the other hand, from §4 we recall the formula (4.2) (after the translation s — s — 1)

((5,2) ®{(s,2) =

and

Hence

((s,2) ©((s,2Z)

%Ms)—?g(s —1)(s — (s~ 1)%s

— NHcgq x (s

(Hc;q ) $)Ci(s = 172 ()2 (s = 2)(s = 1)%s

X (H Ci(s+ 2m)2) Iy (g)_l I(s)*(s—1)72

(H <gq<s>> Gy o) (Lo ﬁ;(f;m))g 0 (3) 7 T - 2)s.
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Lastly, the functional equation s — 2 — s is obtained from the invariance

L(s—1) _ (L((Z—s) -~ 1))1
L(l-s \L(1-(2-s)) °

Remark 9.3 From the applicational viewpoint (see Problem (2) in §10 below) it is quite
interesting to see the convergence region of

Gl5.2) ® G5, Z) = <H <5,q<s>> G (s) <ﬁﬁ+<s + 2””) o (3) e (4 1)

Does this converge in Re(s) > o+ 17 Here (y(s,Z) = (s — 1)((s, Z).

10 Problems

We list some of the remaining problems.

(1) Higher tensor products:

We studied above Z;(s) ® Zs(s) only. It is quite interesting to investigate Z1(s) ® -+ ®
Z,(s) for r > 3: for example, ((s,Z) ® ((s,Z) ® ((s,Z). Our method is extendable
to such cases but the needed calculations become cumbersome. Akatsuka [A] studied
C(s,Fp,) ®C((s,Fp,) ®((s,F,,) for distinct primes py, p» and ps by our method, and he
obtained the following Euler product (or the “Euler factor”):
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Theorem (Akatsuka [A]) Let p, q, r be distinct primes. In Re(s) > 0 we have

((s,F,) @((s,F,) ®((s,F,)

eQ(S)(l

exp

1 & cot <7m11

—p) (=g ) )

4 N9
1 &, cot <7rng1 ) cot (ﬂn i gr)
1 Z ogp 089) _pas
T4 n
n3=1 3
logp
o
i cot (ﬂ-nllogq> + cot (ﬁnllogr)
_|_ _ § nis
4 ny
ni=1
log g
P& cot <7m2 logp> + cot <7m2 10“)
+ — g ngs
4 o
no=1
logr logr
>~ cot (mn cot | ™
i oot (naighy) + oot (mnapss)
+Z n ’
n3z=1 3

where Q(s) is a polynomial of degree at most 3.

Moreover, Akatsuka calculated the degenerate cases (p,p,p) and (p,p,q).

After Akat-

suka’s paper [A], the general case ((s,F,,) ®

is treated in [KW1] by a different method.

- ® ((s, F,,) for distinct primes py, ...

(2) Obtaining results on essential zeros:

7p’f‘

If we can prove that ((s, Z)®((s, Z) (or (o(s,Z)®@((s,Z) in Remark 9.3) has no essential

zeros and poles in Re(s) >

3, then we have ; < Re(p) <

% for all essential zeros p of

((s,Z). More generally if we know that there are no essential zeros and poles of ((s, Z)®"

for » > 2 in Re(s) >

of ((s,Z). Thus letting r — oo we would have Re(p) =

Deligne [D] for the case of a scheme over F,,.)

We may expect that our Euler product for {(s,Z)®((s,Z) (or (y(s,Z) ®(y(s,Z)) should
imply such a needed result for ((s,Z) ® ((s,Z) (or {o(s,Z) @ (o(s,Z)). But at present
we do not have results in this direction. Does this consideration have some relations to
the “absolute scheme” Spec(Z ®p, Z) as in [KOW] and [Dei?

46

L, then we obtain =t < Re(p) < ZEH for all essential zeros p
5. (See Grothendieck [G] and



(3) Theory of multiple Euler products:
Is there a theory of multiple Euler products implying

((s,Z)®((s,Z) = H (s, Fp) ® ((s, Fq)

perfectly with functorial relations? We see some discrepancy from our present results.

Note (May 2006): Recetnly H. Akatsuka (Tokyo Institute of Technology) calculated the

case “a = %”. His method gives the double Euler product in a direct way; see H. Akatsuka

“The double Riemann zeta function” (in preparation).
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