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Abstract. We construct the multiple Eisenstein series and we show a relation to the multiple
cotangent function. We calculate a limit value of the multiple Eisenstein series.
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1 Introduction

For integers r > 1 and k£ > r + 2, we define the multiple Eisenstein series as
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with ¢; = €*™% for Im(7;) > 0. We remark that the series converges for (1, ,7.) €

(C —Rxo)" if Im(7;) > 0 for at least one j. This function is considered to be the multiple ¢
(quantum) polylogarithm since
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We recall the one-variable case
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with the constant term ((1 — k)/2.
In a previous paper [K2] we proved that
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for all positive integers k. This is checked for even integers k by the modularity of Fj(7)
for SLy(Z), but the above limit value seems to be curious especially for odd integers k. We
remark that the above result is written also as
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In this paper we generalize this result to the case of several variables.
To describe our results we introduce multiple sine functions and multiple cotangent func-
tions. The multiple sine function S, (z, (wy,- -+ ,w,)) is constructed as
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where H denotes the regularized product of Deninger [D]:
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We refer to [K1] [KK] for detailes of the theory of multiple sine functions; see the sur-
vey of Manin [M]. The multiple cotangent function Cot,(x, (w1, - ,w,)) is defined as the
logarithmic derivative of the multiple sine function:
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Our first result relates Fy(m,---,7,) to Cotyi_ll)(ﬁ + ot (T, T, 1)

Cot,.(z, (w1, ,w;))
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Theorem 1 Let k > r+2 and 0 < arg(m) <
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Examples
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Coty" (7, (. 1)) = —(2mi)* (Fk(r) -
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Theorem 2 Let k> r+2. Then

. 1 1 T2
lim Fk(7—1’... 77_7’)__ka —
Ti,,Tr—1 7'1 1 T1

(5371

(=) (k= 1)! 3 (=1)™"7*"a(r, k — 2m)

r(2mi)* (2m)!

m=0

where a(r,j) € Z is a Stirling like number defined by

zz+1)---(x4+r—1) Za
J=1

Examples

(1)
iy (50 L]

P
Im(7)>0 T

27

- < arg(r.) < 7. Then
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Our functions can be investigated from the viewpoint of the “Stirling modular form”
which generalizes a notion used by Barnes [B]. Instead of going into the detailed theory,
here we only indicate that “Stirling modular forms” mean some suitable functions of “semi-
lattices” similar to the situation of usual modular forms which are functions of “lattices”.
We notice one example which shows that Fi(7,---,7.) is a function of the “semi-lattice”
ZZlTl‘f‘"“f'ZZlTT‘i‘Z']_.

Theorem 3 Let k > r+2 and Im(m),--- ,Im(7.) > 0. Then
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2 Proof of Theorem 1

As proved in [KW] we have
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where Q(x) is a polynomial of x with deg @) < r. Hence we have
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for kK > 1. In particular
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for k > r + 1. Thus, changing r to r + 1 and taking (wy, - ,wy+1) = (71, , 7, 1) with
r =1 +---+ 7., we obtain Theorem 1. 1

3 Proof of Theorem 2

Theorem 1 shows that the limit value is given by
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We calculate it by using the formula
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proved in [KK]. We look at
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and its Taylor expansion around x = 0. Since
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We notice that Examples are easily checked by Theorem 1.
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4 Proof of Theorem 3

The well-known Lipschitz formula says that
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for Im(7) > 0 with ¢ = €?™". Especially, for 7 = my7 + - - - + m,7, we have
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This gives Theorem 3. 1
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