Division Values of Multiple Sine Functions

Shin-ya Koyama

Abstract. We refine a formula on values of multiple sine functions at division points. As
applications we prove a formula on a sum of reciprocal trigonometric values, and obtain
multiple modularity of a three variable modular function, which concerns a generalization
of the Dedekind 7 function.
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1 Introduction

Throughout this paper we put » > 1 to be an integer and let

-+ ,w, and 1 belong to one side
D, = w:(wla"'awr>ecr wl,. 7 . & .
with respect to a line crossing 0
For w € D, and z € C\ {—myw; — - -+ — myw, | m; € Z>o}, the multiple gamma function is
defined by

[y (2 w) = exp (€0, 23 w)),

where (. (s, z; w) is the multiple Hurwitz zeta function defined by
Go(s, o; w) = Z Z(m1w1+---+mTwr+x)_s
m1=0 m-=0

which is absolutely convergent in Re(s) > r and has a meromorphic continuation to the
entire plane. The multiple sine function

Se(z;w) = To(z;w) ' Th(wr + -+ +wy — x;w)(’l)r

was first introduced by Kurokawa [K1|, which was a generalization of Shintani’s function
F(z; (wy,ws)) := Sa(z; (w1,ws)). In pursueing Kronecker’s Jugendtraum for a real quadratic
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field, Shintani [S] introduced F(z; (w1,w2)) as a generalization of the sine function S;(x) :=
Si(x; 1) = 2sin(mz). More precisely, for an L-function Lk (s, x) = >, x(a)N(a)~* for a real
quadratic field K, he expressed the value

exp(—Li (0, X))

in terms of a product of division values of Sy(x; (1,¢)) with € the fundamental unit of K.
This is regarded as a generalization of a well-known formula over Q:

N-1 x(k)/2
exp(—L'(0,x)) = H51 (%) , (1.1)

where L(s,x) = Y-, x(n)n™* is the Dirichle L-function for a non-trivial primitive even
character x modulo N. The formula (1.1) gives a reason for the appearance of the sine
function in Kronecker’s Jugendtraum over Q in the sense that the division values of S(x)
generate the maximal abelian extension of Q. Discovering a function with an analogous
property for totally real number fields is an open unsolved problem. Unfortunately very few
sequent works are seen after Shintani’s pioneering work [S] in 1977.

The fundamental importance of division values of multiple sine functions is also seen from
another aspect concerning special values of zeta functions. Indeed there is another direction
for the extension of the formula (1.1). In a previous paper [KK2] we gave a generalization
of (1.1) to s # 0. In this generalization, we fix the period to be trivial as we consider
over Q, and simply denote S,(z) := S,(x, (1,---,1)). In the case of N = 1, we proved for
n=1,23,--- that

exp(—¢'(=2n)) = [ | San1 (k)" @1
k=1

with explicitly determined positive integers a(2n + 1,k), and we also proved for y being
primitive odd modulo N that

exp(—=L'(-1,x)) = ]hl (52 (%)N& (%>k> X(k)/2’

k=1

and for y non-trivial primitive even modulo N that

N-1 O\ 2V i\ 2VE-3N? 1o\ ¥ x(k)/2
eXp(—L’(—2,X))=H<Ss () =(3)  s(y) ) .

k=1



These enable to express unknown special values such as

(3) = 4n’log Sy(1),

(o) = o loa(Ss(1)S5(2)")
(0 = S oa(8(1)5:(2)75:(5)"™),

() - (s )5 C)5() 5 )
— 7 log (2352(3) _8> ,
o (2) - B (5(2)75(2) S R)s(0) TS
() TS S )

As shown in these two aspects concerning generalizations of the Dirichlet class number
formula (1.1), the study of division values of multiple sine functions seems to be of funda-
mental importance. Above all, rationality at division points is of central interest.

Fix once and for all an integer N > 2. A basic relevant fact concerning the rationality
of division values is the following formula proved in [KK1]:

I s (klwl a = ko w) = N. (1.2)

0<ki,...kp<N—1

(We remark that in [KK1] everything is done for w; > 0, but the formula (1.2) holds for
w € D, by the same proof.) It would be significant to make (1.2) more precise to get more
detailed information by determining values of various partial products of the left hand side
of (1.2). Kurokawa [K2] recently discovered a beautiful refinement of it for » = 2. He proved
that the contributions from terms with k; = 0 (j = 1, 2) are equal. Namely, he showed that

gl kiw N kow
1W1 . W _
HS (T, w) _kglsg (_N , w) N (13)

and that N y
IT s (M; w) =1 (1.4)
N
1<ky,ka<N—1
He also obtained some applications which will be explained later.

In this paper we first generalize (1.3) and (1.4) to the case of » = 4. A generalization of
(1.4) is easily described. We show the following theorem (Theorem 4.4 below):

3

-



Theorem 1.1

H 54 (k‘lwl + N + k?4(d4; w) -1 (15>

1<k, k2,k3,ka <N—1

One may wonder what happens when r = 3. Since the situation essentially depends on the
parity of r, the formula like (1.4) and (1.5) is not true for r being odd. Actually in Theorem
3.3 below, we obtain an alternative expression for r = 3 in terms of the division values of
the triple gamma function.

For describing a generalization of (1.3) to r = 4, we start by defining the contribution of
k; = 0 to the product (1.2). Let A; be the partial product of (1.2) over terms with k; = 0
and k; # 0 for [ # j. We similarly denote by A,; and A;,,, the partial products of (1.2)
over terms with k; = k; = 0 and k; = k; = k,, = 0, respectively, where all other coefficients
are nonzero. Then by (1.2) and (1.5) we see for r = 4 that

4
(m)( I A)( I A)N
j=1 1<j<I<3 1<j<l<m<3

One of our goals is to determine the contribution from k; = 0 for each j =1,2,3,4 to (1.2).
The key idea is that the contribution of k; = 0 from A,; to (1.2) should be regarded as

(Aj,l)%7 since the product A;; is shared by k; = 0 and k; = 0. This idea is also applicable
for A, which is identified as the product of the three contributions from k; = 0, k; = 0
and k,, = 0. In this way we reach the following definition:

F A (HA)( I A) (16)

j=1 1<i<j<3

which we call the contribution of terms with k4, = 0 to the product (1.2). We similarly define
A, for j =1,2,3,4. Taking (1.5) into account, the formula (1.2) is equivalently written as

ﬁﬁj = N. (1.7)

One of the purposes of this paper is to determine each contribution Zj in (1.7). Our main
theorem is as follows. Without loss of generality we only consider the case j = 4.



Theorem 1.2 The contribution from terms with ky = 0 to the product (1.2) is given by
1. wi_ @i\ 1 s (95w r (klw“Lka W1, Wo, W ) :
A =N (v (-2) 5 w)>H T (= o ene

kiw; +k2w
i#j 0<kika<N—1 Fs( L (wy, wy, 4))

N-1 [T, <w (wl,wj,w@) s F2< s (wi, wj

A%
kl:[l I's ( & ,(wl,wg,w3)> Fg( s (W, wy ) ’

where the sums and the product over i # j are taken over all ordered pairs (i,7) € {1,2,3}?
with © # j.

Corollary 1 If wy = ws = w3 = wy, then it holds that

A, =Ni  (j=1,2,3,4).

J

This shows that Theorem 1.1 is a generalization of (1.3).

Example. When N = 2 and w = (1,1,1,1), we can compute each factor of Ay by using

the results proved in later sections as follows:

2
1
3 2
3 3 41
<H Aj,4> = S3(1)2 = e 2P,
7j=1
% N
< H Ai,j,4> == 27i53 <§) — 2%624/(72)
1<i<j<3

By multiplying the both sides we have

Ay =21,

=

Division values of multiple sine functions have modular interpretations as indicated in
[K2]. Let Im(7) > 0 and ¢ = ¢*™". Kurokawa showed that by putting

Fr) = qzsﬁ(wﬁ)

n(r)?
n(5)n(27)
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with the Dedekind 7 function

n(r) =g [J(1-q").
it holds that .
F (—;) — F(r) (1.8)

and that
(D" (=" 0 1
— — T -). 1.9
; nsin(mnr) * ; nsin(rnr 1) TRV T (1.9)
Indeed he showed that both (1.8) and (1.9) are equivalent to (1.4) for N = 2 and (wy, ws) =

(1,7). In Section 7 we generalize such modular interpretations to r = 4.
The first result is a generalization of (1.9).

Theorem 1.3 Let 0 < arg(73) < arg(m) < arg(m) <7 and 0 < Re(my + 7o + 73+ 1). Then
it holds that
ST,
“— nsin(mnT) sin(wn7) sin(rnts)
T+t +l - (=1)"
= 8 0 1) | —
7TC4 ( ) 7(7—177—277—3: )) ZnSiHOTQ)S'

2 in(7*2) sin(m22)

n=1
)

R~ 2 e S
“— nsin(r7) sin(7 ) sin(m ) nsin(r7) sin(7 22 sin(m )

n=1

where (4 (O, ”TQT*TBH, (11, T2, T3, 1)), the value of the multiple Hurwitz zeta function, is ex-
plicitly given in terms of 7; (j = 1,2,3) in Lemma 7.1.

In the following theorem we obtain multiple modularity of the three variable function
gl
7—177—277—3 H H H <1+ ’fl—"_ e q;3+2>
n1=0n2=0n3=0

for 0 < arg(r3) < arg(m) < arg(my) < m, 0 < Re(rn + =+ 73+ 1) and ¢; = €*™% with
j=1,2,3.

Theorem 1.4 Putx = (1 +7m+73+1)/2 and 7 = (71, 72,73, 1). Then we have the following
multiple modularity:

1 T2 T3 T1 T2 1
o (F -2 -2)F(22-2)
7T/LC4(071;T)

Y
Fo L1 _1
T2 T2 T2

F<7—17T27T3) =€



where (4(0,z;T), the value of the multiple Hurwitz zeta function, is explicitly given in terms
of 7; (j =1,2,3) in Lemma 7.1.

Finally in Section 8 we investigate the behavior of the multiple sine function for real
positive periods w € RY,, and locate some two-division points. In the previous paper
[KK3] we draw a graph of Sy(z; (w1,ws)), and more recently Kurokawa [K3] did it for
S3(z; (wi,ws,ws)). We present a generalization of these works to r = 4. We will show
in Theorem 8.1 that Sy(z, w) has four extremal values in the fundamental period (0, |w|)
with |w| = w1 + wa + w3 + wy, and that each interval of (0, |w|/2) and (|w|/2, |w]|) has both
a maximal and a minimal values. The behavior of Sy(x, w) is roughly shown in Figure 1.

Y

jwl

Figure 1. The graph of S(z) = Sy(z; w).

We will see in Theorem 8.2 that there exist 2-division points both in (a, §) and (3, |w|/2).
Thoughout the proof we use the following notation.
Notation. For r = 3 and w = (wy,wsy,ws), we put for any integer N

in = (w1, Nwg, Nws), wév = (Nwy, ws, Nws), wév = (Nwi, Nws, w3),
ng) = (Nw17w27w3)7 ng) = (wlan27w3)7 w{(;N) = (Wl,WQ,N(.Ug),

Acknowledgement. The author thanks Professor Nobushige Kurokawa for his showing the
ideas in the preprint [K2] and his encouragement for this work.



2 Stirling Modular Forms

The Stirling modular form is defined as

pr(w)™! = lim 2l (2; w).

z—0

We introduce an auxiliary zeta function as

Go(s; w) = Z Z (mywy + -+ - mpw,) "
mi1=1 myr=1

It is related to (. (s, =; w) as
ili% (Cr(sv x5 L«.J) -z )

:C’I"(S; w)—f_zgr—l(sa w(]))+ Z CT—Q(S; w(]v k))++ (w1_8++w;8) C(S)

1
J i<k

(2.1)

Proposition 2.1

2 2
Wi + wj + 3wiws 1 w1 woy
07 ) - =— | — 4+ — 3 ,
C2( (WI w2)) 12w1w2 12 w2 w1 +
1 [w w w w w w 1 W;
C3(0§ w):__ _1+_2 _3+_2+_1_|__3 3| = —— —,
24 \wy w3 w1 W] W3 (Wa 24 T wj

where the sum is taken over all ordered pairs (i,j) with i,j € {1,2,3}.

Proof. We first show the following two identities in turn.

wi +wi 4+ 3wiwy 1 (w1 Wo )

li : - -
lim G2(0, &5 (wr, w2)) 12w1s 12

1
xli%g?)( » & w) 24 (wg + w3 * w1 + w1 + W3 + [095) +

We appeal to an integral representation

271

, . R AC ) (—t)*1
tim (s, a1 @) =~ [



where C'is the standard coutour consisting of +00 — ¢ >0, e (0 <6 <27), & — +oo.
By the expansion given by [B], we have

1 t
li ; = — dt
xli)r(l] C2(05 l‘) w) 27_[_2 /C (1 _ e_wlt)(]. _ e—th)

1 ® dt
- (251—(0)_ ,S2(0) + 251(0)t+...> il
C

271 t 12
= 51(0)

w% + w% + 3W1Cd2

12&)1&)2

For the second identity by putting

t
) =
/) (1 —ewrt)(1 — ew2t)(1 — e—wst)
a b J 9
= t—2+¥+c~|— t+et” 4+ .-+
we compute
lim G(0, 75 w) ! / e di
im T w) = —
50 00 271 Jo (1 — e=1t)(1 — e—w2t) (1 — e—wst)
1 t
27TZ C t2
We calculate each coefficient in order as follows:
1
a = ,
W1Waols3
b o— w1 + Wy + W3
N 2w1w2w3
¢ = W% + w% -+ wg -+ 3(&)10]2 + Wos3 —+ W3wl>
n 12&)1&)2&)3 ’
1 [fw w w w w w
d = m[—+=2+=+2+—=+=24+3).
24 \ wy ws w1 w1 w3 w2

(Under the notation in [B], we write

a= 357(0), b=—3570), c= 3570, d=-35(0), e=

Hence we obtain the two values lim, o (2(0, x; w) and lim, o (3(0, z; w).



From (2.1) it follows that
lim G (0, 73w) = 1+ G(0;w) + G0, w1) + G (0, w2)
1+ G(0;w) + (wi® +wy®) _, ¢(0)

= CQ(Oaw)a
and
lin(l)(g,(O,x;w) = 1+ G0;w) Z C2(0; (wi, wy) —|—Z§1 (0,w;)
1<Z7,¢]j<3
1 Ww; 3
= 1 il Yiigl o2
+ G0 w) + Z o :
1<4,5<3
i
= 1+ GOw +—= | Y Zr6 3
B S 12\ 4~ w, 2
1<4,5<3
1 Wi
= GOjw)+— -
1<4,5<3 Wi
7.]_
Hence
GOw) = = 3 i G (0,5w)
3w n 2 — (,UJ $1£>n 3 L
1<4,5<3
S >
24 1<17<3 Wj
as desired.

Proposition 2.2
21
L(0; (wi,ws)) = lo ,
@0 lonw)) =log SN s
Pz(wh wz)Pz(w% ws)ﬂz(w?n w1)\/w1w2w3
(27)2 p3(w)

¢5(0; w) =log
Proof. By definition we have

CQ(Sa T (Wl,wz))

= i > (miws + mawy + 7)~°

m1=0 mo=0

- Z Z (mlwl + mows + x)—s + Z (ml(xﬂ + ZL')_S + Z (mgwg + q;)_s + 8

mi1=1mo=1 mi1=1 mo=1
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and thus

lim di (G(s, @ (wi,wa)) —27°) = (5(0; (w1, wq)) + 2¢'(0) — (logwiws)¢(0).

=0 as s=0
As ¢'(0) = —1E2T and ¢(0) = —1, we have

log wiws

(2(0; (wi,wz)) = log2m — +lim (G0, #; (w1, ws)) + log )

— log2m— log wywo n }:{% (log Ta(z; (wy,ws)) + log x)
~ logr - log wiwy + lim log(2Ts(z; (wi,ws)))

= log2m — logwiws _ log pa(w1,wa)

~ log 2

Pz(wl, Wz)\/UJ1W2'

For the second identity we have

<3(Sa xZ; w)

= > Y)Y (mawr + mows + maws + )~

m1=0 ma2=0 m3=0

- Z Z Z (mawy + maws + Mmaws + )7 + Z Z (miwy + maws + ) ~°

mi1=1mo=1m3=1 mi1=1mo=1

+ Z Z (maws + maws + ) ~° + Z Z (miwy + mgws + )~ °

mo=1m3=1 mi1=1m3=1

+ Z (miwy + )7 + Z (Mmows + )7 + Z (maws +2)"* + 277,
mi1=1 mo=1 msz=1
and thus

d
ii_)né T (<3(8, T, w)— x_s)

s=0
= (3(0; w) + G(0; (wi,w2)) + G(0; (wa,ws)) + (05 (wi,ws)) +3¢"(0) — (log wiwaws)((0)
e (2m)* _3 log wiwaws
= G0 w)log p2(wr, wa) pa(wa, ws3) a2 (W1, wa)wiwaws g log2m 2

(2m)}

= ((0; w)+1o .
CS( ) & PZ(Wla WZ)PQ((UZ; w3),02(w1, ws)\/w1w2w3
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Hence we have

Cé(o; w) _ logPz(whwz),02(w2,w3)ﬂ2(w1,w3)\/w1w2w3

+1im (¢5(0. 7; w) + log)

(2m)3
- tog P NI a1y )
)2 r—
— log Pz(wlawz)pz(w2>W3)P2(W1,w3)\/w1w2w3
(27)2 p3(w) '

Lemma 2.1

pT(NLU)_l _ pr(w)—lNl—limzﬂoCT(O,x;w)
NE(EES)
= pr(w)™ -4 &
1<i,j<3 J' (7"

2)
3)

Proof. We compute that
pr(Nw)™ = limal,(z, Nw)

. 0 s
— }:E%xexp<£ OZ(m-(Nw)—i—a:) >
5=V m>0
0
= iﬂ%mexf) (% S_ON_Sm>O(m w+%)_s>
= limzexp (% By NG (s, %w))
_ : —s(__ £ —s8 !
= limrexp (N7 (=log N)G (s, 15w) + NG5, 1))
- yr%xexp (( log N)G,(0 ,%,w>+<;<o,%;w>)

_ pr( ) lNl hrntﬂo CT(O,m;w).
The values lim, o (. (0, z;w) for r = 2,3 are calculated in the proof of Proposition 2.1.

Lemma 2.2

g NT_IF /f1w1 krwr'
=11 11 ( ot N,."">'

p"(Nl ’NT k1=1 kr=1
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Proof.

Here we compute

¢ (3,:1:, (;if—ll,..., %)) — Go(s, ;W)

= S (B2 By Cmewta)
- N, N,

m>0

= gl m1N1 k1 )ws my N, + k. )w, - —s
_ Z(Z Z( Th)en = ) +x) )—Z(m-w+x)

m>0 \ k=0 kr=0 m>0

_ Z]\hz_:l]\i:l (m1N1+k1)w1_i_”._'_(m,nN,n—irkr)werx h
B N1 Nr

m>0 k=1 kr=1
— “ .. m - e
Nl Nr
m>0 k=1 kr=1

N1—1 Np—1
=YY L S
r 7N1 Nr ) :

k=1 Ep=1
Therefore

pr(w) Ml Nl (o - - |
ﬂ—ﬂ) = QIE%H...Hexp ¢, ,Tl+...+ N 1w

k1=1 kr=1

Ni—-1  Ny—1
]{?10)1 k,«wr‘
_ H HPT(N1 Rt N ,w).

k=1 k=1

Lemma 2.3

N—l
P2 (wl, WQ) _ N% (9— (% FQ ]CCUQ (Wl w2) .
pa(Nwi, ws) k=1 |
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Proof. We apply Lemma 2.2 to the case r =2, Ny =1, N, = N. Then

N-1
wl,wg k:w2
) s (wi,we) ) -
1

pa(wi, 5 N Pl
By Lemma 2.1
p2 (w1, %) = pz(Nwl,wg)Nl_%<u$2N J?N+3>
= P2 (Nwl,wg)N%( -(+5%))
Hence we have the conclusion. 1

Lemma 2.4 (a) For a sequence of positive numbers w; (j = 1,2,3), we have

w N-1

2 (Wi, wj -n(N+y) ot kw;
H p((T,-,wi):N 7 H HFQ(N (w,,w])).

1<i,j<3 P2 1<i,j<3 k=1
i£j £

(b) For a sequence of positive numbers w; (j = 1,2,3,4), we have

1<i,j<4 P2 1<i,j<4 k=1
i£] i#]
where in the right hand side the sum over i # j is taken over all ordered pairs (i,j) €

{1,2,3,4) with i # j.

Proof. We take a product of the result of the previous lemma over all ordered pairs (i, )

With i # j. We see the coeffieients of N and 1/N in the exponent of N are both given by
DIt '
#J !

Lemma 2.5

pl) =l G G T (S2e)

p3<NW17 Nw27w3)

Proof. We again apply Lemma 2.2 to the case r =3, Ny = Ny =1, N3 = N. Then

~1
w1, W, W kw
gl

pS(WlaW%%) e
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By Lemma 2.1
poln, w2, 22) = pa((Nen, N, wg) N A US55+ 4 (55) )
— po(Nwr, Nusg, wg) N7 (2 (5428) N (55+23) -~ (51422)).

Hence we have the conclusion. ]

Lemma 2.6 (a) For a sequence of positive numbers w; (j = 1,2,3), we have

3 21 1

w; N—1 3
p3(wi, wj,wi) N§—24(1+N+%)ZZ_:? kwy
p3s(Nw;, Nwj,wy) o H | |F3 — (W1, wa,w3) ) -
I=1 b ’

(b) For a sequence of positive numbers w; (j = 1,2,3,4), we have

2 1 “"z N—-1 4
p3(wi,wj,wr) Fom(HN+y) 2 ; /{:wl
H H p3s(Nw;, Nwj,wy) N = H H U5 | 53 (Wi wjywi)
) ) k

=1 i,j#l 1 1=1 &,5#
1<j 1<j

Proof. We take a product of the result of the previous lemma over distinct 4, j, k € {1,2,3,4}
with ¢ < j. The product consists of twelve terms. The coeffients of 1, N and 1/N in the

exponent are all ) <. 1
i#j

Lemma 2.7 For any j € 1,2,...,r, it holds that
Fr(x =+ Wy w) = Fr(x; W)Fr_l(.T; w(]))_l

Proof. We prove for j = 1. The general cases are similarly shown. By definition we have
Fo(r+w) = & (02w@) Here we compute

/
G0,z +ww) = (Z Z(lﬁwl+k2w2+-~-+krwr+x+w1)—8>

k1>0 ko>0 =0
/

= (ZZ-~-Z(klw1+k‘2wQ+ c+ kw, + 1) )

k121 k>0 kr>0

= (0, 7;w) (Z Z (kows + - -+ + kyw, +x)—3>

ko>0 k>0

/

Hence T, (z + wy; w) = e&O@@) =61 (0@w) — T (2: )T, _y (z;w(1)) 71 '

l

s=0
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Lemma 2.8

P3(w1, w2, w3) \/ W1Waws

pa(wi, wa) pa(wa, wa)po(wr, ws) (27)2T5(|w|; w)

Proof. We compute

p3(wi,ws, ws3)
pa(wr, W) pa(wa, w3)pa(wr, ws)
— lim 23T5(x; (w1, w2)) o (; (wa, w3) ) Ta(x; (Wi, w3))
20 237 w)
= glcli% x? exp (Cé(ov €, (wl’w2>> + <£(07 €, (va w3)) + Cé(()? €, (wlv w3)> - Cé(Ov €5 w)) :

Here

€2(87 €, (w17w2>> + <2(57$; (w2,w3)) + <2<57x; (wlawii)) - C3(87 ;s w)
- Z ((mlwl + mows + )% + (Mmows + maws + x)"° + (Mmywy + maws +x)~°

m>0

—(miw1 + mows + maws + z)~°)

= — Z(m ‘wHT) 4 Z (mywy + )%+ Z (mowg + )% + Z (maws + )~ °

m>1 m1=0 mo=0 m3=0

3
= —G(s,z+|wjw)+ Z(l(s,x,wj) — .
7=1

Thus

/03(011, w2, ws)

P2 (wl, Wz)pz(w% w3)02(w17 W3)

3
= lim 2” exp (—Cé(o,a: + |w|;w) + Z (1(0, z,wj) + log 1:)

r—0

Jj=1

z—0

= (Fs(\w!; w) H Pl(wj>> :

3
= lima’exp (—Cé(o, r+ |wliw) + >0, w))
j=1

16



As we have

pr(wy)™t = limal(z,w;)

= lim 2e%0%w))
x—0

= lim xe(z;.::()(m“’f”)fs);zo
x—0

= im g S e )
x—0

_ <lim xe—logz) (@5 *C®))ig

x—0

—  el(=1logw;)C(0)+¢(0)

6% log wj—% log(2m)
Wy

o’

we reach the conclusion.

Lemma 2.9

P3(w1, w2, w3)
P3(w1,w2,NW3)

_ nE (- (S (Be) v (242)) H’ Iy (—k1w1 ]—l\-[/fzwz; (wl,wg,wg))

0<k1,ko<N-1

Proof. When r =3, N; = Ny = N and N3 = 1, Lemma 2.2 shows that

N | Y (M (wbwzaw?»))

w1 w3
2122w N
p3(N’ N 3) 0<ki ka<N—1

Here by Lemma 2.1

3(%7%#«03> - :03(001,0)2,Nw3)N1_i(%+%+N(z+ )+N(WB+W3))

Lemma 2.10 For a sequence of positive numbers w; (j = 1,2,3), we have

3 1

2 w;
3 (wi, wj, wy) Yoo (Nrg) T o krw; + kaw;
| | =N #i | | | |7 s | ———————
p3(wi, w;, Ny 3 N e w)

1= i<j 0<kq,ka<N—1

17



For a sequence of positive numbers w; (j =1,2,3,4), we have

21

p3(wi, wj, wy) T 12(1+N+N) kiw; + kaw;
=N U3 | ———; (wi, wy, .
H 11 os(on ooy Na) H I1 II 3 N (i wj,w)

=1 4,371 =1 4,#! 0<k1,ka<N-1
i<j 1<j

p3(wi,wj,wi)

Proof. By the previous lemma, we have an expression for Pl o N Taking a product over

[l =1,2,3 leads to the conclusion for the first identity.
For the second identity, all we have to do is to take a product over possible combinations
i,7,0 where | =1,2,3,4 and (4, 7) runs through combinations of elements not equal to [. u

3 The case r=3

Theorem 3.1 In the product (1.2) for r = 3, the contribution from terms with ko = k3 =0
18 expressed as
N-1

kwi
15 (5 e)
= GXP<—2C§(0; (w1, Nws, Nws)) +2¢3(0; w)
—(5(0; (w1, Nwa)) — (3(0; (wi, Nws)) + G(05 (wr,wa)) + (05 (wi,ws))
~(log V) (2<3<o; (i, N, No)) + Ga(0; (w1, Nem)) + Go(0; (w1, New)) + <<o>)> .

The total contribution from terms with two of the coefficients k; being zero is expressed as
follows:

kw;
Iy (TJ; (%Mj))
N—-1 1<i,j<3

N-1
Sg kwl,w Sg @;w 83 @, :N% 7
N N N 3 kw
k=1 k=1 II 113 < Aﬁ >
j=1
Proof.

ki=1
B N-1 1
iz Us (o] = B¢ w) s (B )
(9 = 1W1 ]{lel
= €eXp <_ g s:0k1z:1 (CS (57 |L¢J| - N ) (.d) +C3 (57 N ) w>)




and

N—-1 oo o) [e's) —s
kyiwq
E E E miwy + Mows + Mmaws + |w| — N
k1=1m1=0ma=0m3=0
N—1

Z Z Z (m1w1 + Mowso + M3aws — k§;d1)_s

N° Z Z (MmN — Ep)wr + meNws + mgNws) ™

ki=1mi=1mo=1m3=1

Ns (Cg(s, (wl, NU)Q, ng,)) — Z Z Z (mlel +m2Nw2 —i—mgng)*S

mi1=1mo=1msz=1

° (C?)(s; (wla Nuws, NW3)) _N_SC?)(S; w))
°C3(s; (w1, Nwa, Nws)) — (3(s; w),

= =

i i i (m1w1 + mowa + M3ws + kxful ) h

0mo=0m3=0
N YT D0 D0 D (mN ke +maNws o+ msNows) ™
1 m1=0 m2=0m3=0
N*(Gs(si (@i, N, Nuwg)) = N™Gs(s; w))
N-1 o 0o

N? Z Z Z ((m1N + k1)w; + maNwy)™*

ki=1m1=0mo=1

>
K
I

+

[e.9] o0

N-1
—I—NS Z Z Z ((mlN —f- k‘l)wl + mgNw?))iS
ki=1m1=0ms3=1

[e.9]

+N* z_: Z ((maN + kp)wy) ™

ki=1m1=0
N*C3(s; (w1, Nwa, Nws)) — (3(s; w)
+N*(Ga(s; (w1, Nwa)) — N73C(s; (wr,w2)))

19
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+N*(Ga(s; (w1, Nws)) — N7°Ca(s; (wi,ws)))
+N°wi (1 — N7*)((s)

= Ns({g(s; (w1, Nwa, Nws)) + Ca(s; (w1, Nws)) + Ca(s; (w1, Nws)) + wfsC(s))
—@3(s; w) = Ga(s; (w1, wa)) — Gals; (wi,w3)) — wi°C(s).

Thus we obtain the first identity in Theorem. Therefore we calculate

i kw kw kw
log H S (Wl’ w) Ss3 <T2’ w) S (WQ’ w>

0;w") = C5(05w)) = Y (G505 (wi, Nwy)) — G305 (wi, wy)))

(=1 i
—(log N) (22(304»1 +ZC2 w,,Nw])—;>
- Zlog ( l f2 (WI’M)'%(M’wj>p2(wi’wj) )2 + Zl p2(wi, Nw;)V'N
NP2( )

wi, Nw;) pa(wi, Nw;) pa(Nw;, Nw; p2(wi, wj)

i#j
1 1 w; 18 3
—(ogN) [ —= (14N Yi (N )2
(log V) 12<+ - )Z o+ <+N),,wj+12 2)
7]
wiV) D

2 3_1 Wi
(] ) palwi, wi)paln, ;) )HOgNz P
w

pa(wi, Nw;)pa(wi, Nwj)

2
= log N% 2#] J H (pfﬂ(wlN)) pg(wl,wi)pz(wl,wj) ,
=1 p3( ) pz(wlani)pQ(WZ,Nu}j)
where ¢ and j denote the elements not being equal to [, when they are in a sum or a product

over [.
Hence by Lemmas in the previous section,

N-1
kwi kws kwo
k:153( DEICDEIC

1 w; 3

9 2
N “’H(PM ) [ 2l
=1 1§.1;]'.§3 pQ(wth])
i#£]

+(log N)

<_
S (2
(a5

20



i#j

Theorem 3.2 In the product (1.2) for r = 3, the contribution from terms with ks = 0 is
expressed as

Pt kiwy + kow
II 115 (T w) — exp (—2 (60:08) = G5(0301) = G50 w]) + G505 )
- <2C§(0; (w1, w2)) = G(0; (Nwi, wa)) — G(0; (wi, NWz)))

~ (og ) (2 (60"~ Gal0r) — (01

+ (CQ(O; (wi,wa)) = (05 (Nwr,wa)) — (05 (wi, Nm)))))

The total contribution from terms with only one of the coefficients k; being zero is expressed
as follows:

]ﬁl ]ﬁl IS /{1(.4)1 + k2w2 S wls k‘l(.UQ + kz&)g - w)s k1w3 + k2w1 W
3 N ) 3 N ) 3 N )
k1=1 ko=1
_Q_i_i z % N-—1 ) 4
N 1712 v HF:},(%;W)
k=1

3
J=1

N Nﬁl T, (%, (wi,wj)> (K I’ T (%;w)ﬁ

J0<ky,ko<N-1

21



Ji—fN 15 leUl+k2W2 w
3 3 N )

k1= 1k2
N-1N-1 X
= kiw kows . k1w kaws .
AL T ol — g, )T, (e, )
exp 0 N—1 N-1 (C (3 |w| krown + kQWQ ) 4 ( kywr + kgwg_ w)))
) Rz ’ ’ N 3 - a7 .
as s=0 k1=1 ko=1 N N
Here
N-1N-1

Y36 ( o] — a1t s, w)

N
k1=1 ko=1
N—-1 N—-1 oo 00 00 —
k1w1 + kQCL)Q #
= E E E m1w1+mzwz+m3w3+|w|—T
k1=1 ko=1 m1=0 m2=0m3=0
N—-1 N-1 oo 00 00 —5
klwl + kfgwg
= E E E mMiwy + Mowo + Maws — T
k1=1 k’z:l mi1=1mg=1m3=1

= N°? Z Z Z Z Z mlN ]{31 wl + (TTZQN k?g)&)g —l—mgng) ?

k1=1ko=1m1=1mo=1m3=1

= N° Z Z Z (mlwl + Mowsy —I—mgNng)*S

m12>1 mgo>1 mg>1
Nimy Nimg -

= N°(G(s; (wl,wz, Nws)) = G3(s; (Nwy,wa, Nws)) — (3(8; (w1, Nwa, Nws)) + (3(s, N (w1, wa, w3)))
= N (Glsw) = Glsiwh) = Glsswh) + Gls, Nw) )

= N (Glsw) = Glsiwl) = Glsiwd)) +Glsiw),

and

— k1w1+k2w2
D2 Gl e
k1=1

ko=1
= XSS (s oy 1 2
k1=1 ko=1m1=0 ma2=0 m3=0
N—1N-1 oo 00
= N Z Z Z Z ((maN + k1)wi + (maoN + ky)ws + mazNws)™®
kl lkz 1mi= Omg 0m3 0

22



m1>1 mo>1 m3>1 m1>1 mg>1
Ntmy Ntmg Ntmy Nimg

— (Z Z Z mywi + maws + maNws) ™ * + Z Z (miw; + meg)s)

- NS(<3<s,w3 — Galsiwl) = Golswh) + Go(s, New)
ol (w1, w2) = Golss (Nwr,wa) = Gals (w1, Nwa)) + Go(si (Nwn, Ney))
= N (<3<s,w3 )= Glsiwl) = Glswd)) + Glsiw)
IV (Galss (w,02)) = Galss (N, w2) = Golsi (w1, Nown) ) + ol (w1, 02))

Thus we have the first identity in Theorem. For the second identity we calculate

1 N-1
ZZZ(Cs(S ol = BB ) g (5, Bt )

s=0 ’L<] ki1=1 ko=

0

O0s

- 22(@,0% ) = 2605 1) + G0 w) ) + D (GhL0; (wir ) — Go(05 (Nwi,wy)) )
i#]
+ (10gN) (2 i (600 — 265000 + 32 (B 0 (v )

=1 i#j

2 (Wi, wj) 31 1%:7;“) i s(w))? ’ 3(w) VN
T e <i# m) (N ( >) H((pm(u) ) pyinN)) (mf)

_ (#j %) (x5%) H ((piii; ) pﬁ?%))




-1y o S-LV+E) X & kw;
= log (N " ) NEETES T T (%s(%Mﬁ)

wi I1 IT I's <—k1wi;k2wj>

1 1
— e (IHN+R) 20 0 i) 0<ky ka<N—1
+ log 7

2
Y k wj kow:
A, kw; 1l <k lk_[<N 1F3 <%>
= IOg N i#j I H FQ (_3,(%,%)) 1<) 0=k ke =

Example. When N =2, w = (1,1, 1), we have

5 (1) =27 <r2<é>3?2§§3r3<1>3)2 =2 (n(3) F3<1)>_6'

As we will show later in the final section, it agrees to the results on the special values
¢ =2+ (=)
P .

S3(1) = e'D, Iy(3) = 2 2ie" (;1), and I'3(1) =e

Theorem 3.3 In the product (1.2) for r = 3, the contribution from terms with none of the
coefficients k; being zero is expressed as follows:

ot (/{lel + k’gbdz + ]fgu)g )
I1 s v L w

Il
A Il

2 (Z (g3 05w ™) — ¢ (05 w? )) - (logN)Cg(O;w))>

2

H: H F <k1w1+k2w3,w>

Ly i [ 0gkikesN-1 <)
1<j

»M\l
w"‘

w, 1<4,j<3

N—-1 3 k
[T IITs (5 w)
k=1 =1

<7
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2_: Nizl Ni (C:a (37 w| — utd +k§\c;2 ha k3w3; w)

—|—C3 (S, k1w1 +kj:[02 +k3w3; w))) ‘

SX S (s fwl - PR )

> kiwy + kows + ksws\ ~°
= Z Z Z (m1w1+m2w2+m3w3+|w|— =l §V2 : 3)

1=0 m2=0m3=0

3

- Z Z i i i (m1w1 + Mows + Maws — aen + kj:[dz * k3wg> -
k1:1 ka=1ks=1mi1=1 ma=1 ma=1

N-1N-1 oo

= NSZ Z Z Z Z Z (MmN = kyw + (maN — ka)ws + (maN — kg)ws) ™

k1=1ko=1 kz=1mi1=1mo=1m3=1

- N° Z Z Z (miwy + mows + maws)~°

m1>1 mo>1 mgzg>1
Ntmy Ntmg Ntmg

and
N—-1 N—-1 N-1
Z Z C < klwl + ]{?20)2 + k?gbdg
31 S, ; W
N

k1=1ko=1 k3=1

N—1N-1N-1 o~ [e'S) —s

k1w1 + ]{72(,4)2 + /{33(,(}3
= E E E miwi + Mowo + Mmsws + N
k1=1 ko=1 k3=1m1=0ma=0m3=0

= NSZZZ i Z Z ((m1N + k1)wi + (maN + ko)ws + (MmN + k3)wsz)™*

k1=1 ko=1 k3=1m1=0ma2=0m3=0

— N° Z Z Z (mywr + mowy +m3w3)_s

m12>1 mg>1 mg>1
Ni{mq1 Nimg Nimg

25



Hence

k1w1 + kgtdg + kgbdg
, W

N

0] ==  kwn + ks + k3w3
% €3 S, | N + €3
5=0 g1 =1 ko=1 k=1
0 —s
N’}Wu N’?mz N’?ms
5 3
— a_ 2Ns <(1 . —S)(g S.w — Z (§3 Sw(N)) — C3(S7w‘§v)>>
S s=0 j=1
5 3
= 95 2((N — 1)(3(s;w) NSZ(C:aSW CS(S;“’;'V)>>
o s=0 j=1
: 3
) <_Z(¢§(o w™) — ¢ (0;w¥ )+ log N) <<3(0 w) Z( (U1 >—43(0;W§V)>>)
j=1 =1
3
_ 2<_Z<Cé<0 w(N) O,Qj >—|— IOgNC?,Ow)),
j=1
since

: ; 1 i 1
>l - Yoos) - 5 (2 (1w L) o)

i#]

2
1., (V) 1. _ 1 pa(wi, wj) - p3(w§‘v)
2 (G0 GO = e (NS I,<Ij pg(?\fwi,f\;wj 11 )
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We also compute by Lemmas in the previous section that

pa(w])  pa(w)) ps(w)
pa(wi™) P3(@) py(w™)
H H, Iy (klwi]‘i\‘[kQWj : w)

i<j 0<ki ka<N—1

ﬁ Nl:ll Iy (52 w)

I=1 k=0
Thus

2
klw'-f—kgw"
1 wy 3 3 1 wy H ’ F3< ZA]\f ]7w>
12| 2 oot Tem6 X 5t | i 0<ki ka<N—1

52 b | i<y 0<ky ka<N—1
3 N-1 k
[T IT s (5 w)

=1 k=1

Example. When N =2, w = (1,1, 1), we have

S, (;) =23 (F?’(Fz?%(l)y = 2iTy (%)6&,(1)6.

This agrees to the results we will show in the final section, since S5 (%) =2

4 The caser =14

Let

A H S, <k:1w1 + kowg + ksws + k4w4; w> .

N
1<ky,....ka<N—1
Then

H) s, (k1w1+k2w2;k3w3+k4w4 ) AHA HAJZ H Ajim, (4.1)

0<k1,....,ka<N-1 J,l=1 j,l,m=1
i<i j<l<m
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where A;, A;;, and A, ,, are the partial products defined in Section 1.

Theorem 4.1 The partial product A;; ,, is expressed in terms of the triple sine functions

kn=1

PN

Aj,l,m - N_

In the product (1.2) for r = 4, the total contribution from terms with three of the coefficients
k; being zero is

1
4 no1 1T (%, (thl))2

I A =NTIT1 = T
j<i<m ! i=t k=1 [[ T3 (%5w(j>)é
1?;?4

Proof. We calculate A;;,, for j,l,m =1,2,3,4 with j <l <m. Let n € {1,2,3,4} be the
number which is neither j, [ nor m. Then we have

N-1
knwn N — kn Wn
A?,l,m = H S4< N 3 w> Sy <%, w>

N—-1
knwn ko,
kn=1
N-1 .
Futon binton
= kHIS4< N ;LU>S4<Wj+wl—|—wm+ N : )
N-—1 .
kpwn Ky, koo
B kl;[l 51 ( N ; w) Si (wj +w + N_; ) S (Wj +w; + T; (m))
N-1 1
kpwn, kw,
kn=1
knwn nWn
Sz | w; + N s w(l) ] Ss | wj +w + e (m)
N-—1
knwn, ko -
- kl_:[153< N ‘*’U)) 53 <%'+T; wﬂ)) S (wj+wl+ e (m)>
N-1 .
I1 s (P57 ) s (B o) (5 w0




Hence we obtain

= N—i:_ll (sg (kfv” w(y’)) Sy (kfv" w<z>> Sy (k; w(m)))é

by (1.2) for r = 1 and 2. This proves (4.2). Theorem 3.1 leads to the second identity. 1

Theorem 4.2 The partial product A; ; is expressed in terms of the triple sine functions as

Fonm + ko N o ot + Fnwn
Ay = II s (% w(g)> S, (% w(l)) (43)

1<k kn<N—1

NI

In the product (1.2) for r = 4, the total contribution from terms with exactly two of the
coefficients k; being zero is

W~

W

N-1 . 2
NI e H [T7Ts <TJ§W(1)>
H Aivj _N 212 o I=1j#l k=1

e

~

1<4,5<4 , kiwi+kow; N kw;
ks I1 11 I's ( N ;w(l)) [T IT I (TQ (mej))
L\ <, 0k ko <N—1 ij#l k=1
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Proof. We first calculate A; 5. It follows that

k3u)3 + l{?4(.d4
A%,z = (
1<ks, k4<N 1
_ <k3w3 + /<?4w47 w) s, ((N k3)ws + (N — ky) : w)
N
1<ks, k4<N 1
<k3w3 + kawy ) ( kaws + kywa )
= , W 54 w3+w4—T;w
1<ks, k4<N 1
(k’gwg + ]{?4(4)4 ) ( kgwg + k’4uJ4 )_1
g 7 w 84 wl + WQ 9
N
1<ks, k4<N 1
k k k k !
_ ( 3Ws + 4w47 w) S, (w2+ ngj\_[ 4w4; w)
1<ks, k4<N 1

xS (Ldg +

k + k kaws + kqw
_ H S3< 3W3N 4W4; w(2)) Sg( 3 3N 4 4; w(l))

1<ks3,ks<N—1
k k !
w&ﬁg%ﬂgwmo‘

kBW3]_'\_[k4W4; w(1)>

Therefore denoting by m, n (m < n) the numbers in {1,2, 3,4} different from j and I, we
showed for 7,1 =1,2,3,4 with j <

b + knwn N7 oy { o + Fntn :
to= TT (Pt ) s (R o))

1<km bn<N—1

kWi, + knwn ) B
X Sy (— w(g, l))

D=

N
kW + knwn , 2 kpwm + knwy, 2
= H S3 (Tu w(g)) S3 (Ta w(l)) :

1<k kn<N—1

This proves (4.3).

In the product [] A;,;, which is the product over terms with just two k;’s are zero, the
4,
contribution from S3(-; w(4)) is calculated by Theorem 3.2 as

-1 N-1

[T T1ITs: (5 )

1<4,5<3 kl 1 k2 1
i#£]
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Njw

94 L
N i#]

N-1 kw.: kiw;+kow; 2
[T (5w ) T TD T (Bt 0()
lgii%jjg?’ k=1 1<j 0<ki1,ko<N-—1

Njw

JL T (s

I ()
<i<j

<3 0<ky,ka<N—1
Taking a product of such expression leads to the second identity. 1

Theorem 4.3 The partial product A; is expressed in terms of the triple sine functions as

kiw; + kow,, + kswy, , 2
Aj = H 53( tad 2 & ;w(])) 3 (4.4)

N
1<k k2, k3<N—-1

where | < m < n are the elements not equal to j in {1,2,3,4}. In the product (1.2) for
r =4, the contribution from terms with only one of the coefficients k; being zero is

SR ' ) Y =Py

12 wj 0<k§1 k?2<N 11=1 i<y

4

A ' _ N lgi’;J]S INE2S
II J N—1 4
j=1

7_
2

Proof. We first calculate Aj.

k k k
AZ = H S4( IWI+ QWQ—‘F 3W3; w

N
1<k k2,k3<N-1

kywy + kows + ksws
= H Sa )

N
1<k k2, k3<N-1

(kiluh + kowy + kaws
= H S4 , W

N
1<k ,ko,k3<N—1

Fron + kows + k
_ I1 53( ot j\‘;ﬁ 5, w(4)).

1<k k2, k3<N-1

N

€
~_ N~ ~—
o}

S4(W1+W2+(x)3— N

where we used the formula [KK1, Theorem 2.1]

Sp(z 4 wi; w) = S (2z; wW)S,_1(z; w(i))™

31

54 ((N — k:l)wl + (N — k’g)(ﬂg + (N — kg)u)

3
, W

k1w + kaws + ksws )
D w



and the functional equation
Sp(z; w) = Sp(jw| — 2 w)VT

Hence we proved.

kiwy + kows + ksw 2
A, = H 33(11 2Wo 33;w(4)> ‘

N
1<k1,ko,kg<N—1

This proves (4.4) for j = 4. Theorem 3.3 gives
oo I T T (BegEe)

1
20 2 i | 0<kika<N—1 i<j
! =M= 1<i,j<3

Ay =N 1<4,5<3 ~ T 3 ) (4.5)
[T 1T (55 w(4))
k=1 I=1

Similarly we have A; for j =1,2,3,4. Taking a product leads to the conclusion. 1

Theorem 4.4 In the product (1.2) for r = 4, the contribution from terms with none of the
coefficients k; being zero is given by
A=1.

Proof. By considering the product of (4.4), (4.3), (4.2) over all possible combinations j <
[ < m, we get all possible values Sj(x,w), Sa(x;w’) and S3(x;w”) for any possible one,
two and three dimensional vectors w, w’ and w” and for any possible linear combinations
r =) kjw;j/N with 0 < k; < N — 1. Thus by using the formula (1.2) for r =1,2,3

D=

4 4 4 4
A T4 I 4 = (I 11 53( %; w(]))
I#]

7j=1 Jl=1 J)l,m=1 j=1 0<k;<N-1
j<it j<l<m 1£j

4
1 1I 52< o, w(jJ))
—yy

Gil=1 0<km<N-1
i<l m#j,l

(SIS

M 10 s (’“T“’ w(j,l,m>)

Glym=1 0<kp<N-—1
j<l<m n#j,l,m

_ N@N(;)N@)%

(N4—6+4)%
= N.
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Then by (4.1) and (1.2) we have

which proves A = 1.1

5 Proof of Main Theorem

Proposition 5.1

klwi + k?gu)‘

J.
| | | | S3 < N 7((401',&)]',&}4)
1<k, ko<N—-11<i<5<3

i

w5 N-1 kw.:
’ H H F3 (TJ?(WZ7WJJW4)>

i) k=1

N-1 kw.: kiw;+kow; 2 |
T 0 (5 nwn) | (TT T T (M2 ()
1§_z;j_§3 k=1 i<j 0<k1,ka<N—1

¥

9 1
-1t 2 2
i#]

N

Proof. By Theorem 3.2,

kyw; + kow;
H H Sy (%;(Wiaﬁ%w))

1<k, ko <N—11<i<j<3

= [[ew (2<;,<o; W) = G0:™) = G5(0,w) + G (05 (Nury ) — GL0; (wi,))
i#£]

+(log N) (2C3(O; w) = ¢5(0; ™M) + (0 (Nw;, w;)) — M))

In the last line the coefficient of (log N) is calculated by Theorem 2.1 as

Z<——(w TR T +3)

oy 24 ij Wy Wi Nwi Wy Nw4
1 [w; W; Nwy w; Nwy w;
— | — 3
+24 (wj +Nw4+ w; +Nwz+ w; +Nw4+
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Other parts are treated by Theorem 2.2 and Lemmas in Section 2 as

p3(wi, wj, Nwy) ( p3(wi, wj, ws) )202(%—7\7%) (Pz(NWj7NW4))2N
p3(wi, wj,ws)  \ p3(wi, Nwj, Nwy) p2(wi, wj) p2(wj, wy)

i#]
sea (g () by + b =
g [T IT o (72 )
i#j 0<ki,ka<N-—1
(plezowa)|
21 1 Z “j 7+ﬂ+i+7 > - kw 2
24 | - w, Nu)
x| N Al ;}_[1 E[F:z ( le(wi,wj,wz;))
=1 i#y

_9 i 1 Wi N—-1 —1
2+ 2 Wi
x N ”‘7 H HFQ w,,w])

k=1 i#j

2

3
2 )
—6+15 > (w4+ 4+3> N

x | N i=t

2 ll2y Zita > 2l ea
= N i#5 =194 i

I T 1o (s )

i#] k=

I1 H Fz( (wz,wj)> (H T r, (%IW;L‘OQ)

1<i,j<3 k= 1< 0<ki1,ka<N-—1
i#]

as desired.

Proposition 5.2

Proof. By Theorem 3.1 and Lemmas in Section 2, we have

kw:
H 53 (%7 (wh Wj,u)4>>

i#]
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as desired.

HGXP< ( s (Wi, wj, wa)) — G(0; (wiaNWwNM)))

i#j
+C5(0; (wi, w;)) + ¢5(0; (wi, wa)) — G(0; (wi, Nwj)) — G (0; (wi, Nwy))
—(log N) (2@,(0; (wi, Nwj, Nwg)) + 26 (0; (wy, Nw;)) + g(0)>>

H(pg(wi,Nu)J’,NW4))2 p2(wi,wj)  pa(wi,ws) ( p2(wj, wa) ))2N1

oy /)3(%'7%7004) /)2(%‘,]\7%)/)2(%‘,]\70)4) Pz(ij,NuM

2 wi Nw w; Nw; 1
—(W+—+—4+—+—+N—w4+3) (Nw +2 +3>+5

<« N2
_21_;,_2(2 wj+:4+N e > N-1 kw, -2
N V=7 ( ) N( 4) HHF3<;;(%’%’M4))
i#j k=1
9-% S(N+4)( 2ipea N1 kw; kw;

XN 12 'L;éj( N)( J J) H H FQ (%, (%,%)) FQ %7 (a)j7u)4>)
1#£j k=1
2

3w wy
X NGTE(& ) N~°

i 3 ((3t5 ) o (220) Y e O o) e (55 G )

2
i#] k=1 ' (]M (WH%,M))

Proposition 5.3

i<j 0<ky ka<N—1
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Proof. By (4.3) we have
kyw; + kow; kiw; + kow;
HAJQ'A = H H Sy (%7 (w1,w2,w3)) Ss <%7 (wi,wj,w4)) )
Jj=1 1<k, ka<N—11<i<j<3
(5.1)

The product of the first and the second factors in (5.1) is given by Theorem 3.2 and Propo-
sition 5.1. Proposition follows. 1

Proposition 5.4
HAijz,L = N%—u%1 <N1§g(:?_:i)+1{rl;(x—:;)>

No1 [T T (52 (w), wa) %F2 B (wi,w))
i g
(il;IjF3 <T; (Wiawj>w4))> (};[J I's (T; (wl,w2,w3))>

Proof. By (4.2) we deduce

= kw;
T4 = s (57)

i<j J=1 k=1
N—-1 kw 3 kw 2
_3
= N1 1 <1Lj| Ss ( NJ7<wZ’wj7w4)) jlzll S3 ( N 7(w17w27w3))> )

where the last products are calculated by Proposition 5.2 and Theorem 3.1. The proof is
complete. 1

Proof of Theorem 1.2. Each factor consisting 24 is calculated in (4.5) and Propositions
5.3-5.4. Taking a product leads to the conclusion. 1

6 Special Values

In this section we present some numerical datum which are necessary for the examples given
in the preceding sections.
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Notation. When w =1 = (1,...,1), we simply write I',(z,1) = I'.(2).

(=24 (-1
2

Lemma 6.1 We have Ty(1) = ¢, Ty(2) = V%2 Ty(1) = ¢ , and T'3(2) =

e Forn > 3, it holds that
n—1\
I'y(n) = exp (g’(_1) + ) H ptin
k=1
and that
['3(n) = exp <C'<_2) - (2721 —3)((=1) (n— 1L(n - 2)) ﬁ sy

k=1
Proof. For an integer n > 1, we compute
- - fr(k—n)
r(s,m,1) = m-1+n)°= —_—
G:(s,m.1) mZ( =2

where

fr(n) = #{(kl, vy kr) | kl R kr =n, kl, ...,kr 2 O} = nJrT,lCn.

When r = 2 or 3, since

+1 =2
fr(n) = {7n+1)(n+2) (r 3; ’

2 (r=
we have
1) = S
k=n
= (=) - 1)) - Y P
k=1
and
R e
— k2= (2n—3)k+ (n—1)(n—2)
s—2 2n —3 n—1)(n—2 nl o V(k a9
= B IR P ) - S e
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Hence

(1) + nT_l —i-niQ(k +1—n)logk
¢ (0,n,1) = k=1

2 2

k=1

Thus we have the desired result as I',(n) = e$©m1),

1 (=
Iy (5) = 2_2146_< & 1).

Proof. Putting r =2, w =1 and N; = Ny, = 2 in Lemma 2.2, we have

Lemma 6.2

Hence we have the conclusion.

ra(3) = 2 ew (-20-2 - Jo'-n).

Proof. Putting r =3, w =1 and N; = Ny = N3 = 2 in Lemma 2.1, we have

Lemma 6.3

1,1,1 1\* 3
p3(1 1 1) =TI (_) F3(1)3F3 <—> .
p3(3:3:3) 2 2

From Lemma 2.1 the left hand side is equal to

1 o — 9%
2

(=24 (=1)
P , and by Lemma 2.7 we have

By Lemma 6.1 I'3(1) = e
3 1 1\ 1\ 2z ¢en

Is(=)=Ts5= )= =I5 = )221e 2

(2) = ()r () n(e)s

38
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appealing to the previous lemma. Then we have

o, (1)4exp (2N €O

ool

9-

2 2
4 s .
= Ij (%) exp <3C(2 2) + 2C/(—1)> 221,

Thus

7 Modular Interpretations
Lemma 7.1

7(6011 + W% + Wg + wi) + 10 Z W?wjz — 360w wowswy

w1 + wa + w3 + wy 1<idea
C4 07 yw | =
2 5760w wawszwy

Proof. We appeal to an integral representation

) _F(l o S) e—xt(_t)s—l
Gals, w5 w) = 2mi /c (1 —eert)(1 — e w2t)(1 — e~wst)(1 — e*w4t)dt’

where C is the standard coutour consisting of +00 — & >0, e (0 <0 < 27), & — +oo.
By putting

1 a4 a_s a_og a_q
= g T3 Ty T O(t
(1 — €_w1t)<1 — 6_“’2t>(1 — e—w3t)(1 — e—w4t) t4 + 3 + 2 + t +ao+ ( )
as t — 0, we compute
1 e—:ﬂtt—l
0, @ = 5 dt
C4< , &I UJ) 271 /C (1 _ e—wlt)(]_ _ 6—0,)2t)(1 _ €_w3t)(1 _ €_w4t)

2 3 4

i Tr"a_o T a_s i T a_y
= ap — ra—1 — .
2 3! 4!
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We calculate each coefficient in order as follows:

1
a_y = ——,
W1WoWwswy
a w1+ wo + w3 + wy
-3 ==
2&)1&)2&)30)4
1
ay = ————— Wi +wl+wi+w:+3 E wiwj | ,
12w1w2w3w4 i<
1<4,j<4
a_1 = g wzw + 3 E wiw;wk | ,
2400100%03014 =
1<4,5<4 1<i<j<k<4

ay = -t Wi+ wy +ws+w;—5 Z wiw —152 Z wiwiwy

720w1WQW3CU4 i<j i=1 1<j,k<4
1<i,j<4 j,k#i

Taking = = w and carrying out straightforward calculations lead to the result.

Proof of Theorem 1.3. By Akatsuka’s product expression [A] of multiple sine functions we

have
4 nx )

Sy(z;w) = exp | mi4(0, z;w) —l—ZZnHl_enwl)) . (7.1)

1 n=1
= I#j

When z = (w; + ws + w3 + wy)/2, we compute
nr 4 nw nw
! !
) = — ) = (=1)" — .
e(%‘) Ee(ij> =) He(ij)
Hence

M
Si(z;w) = exp [ mi¢4(0, z;w) —|—ZZ H 1_@&3‘;)

]lnl wj

]].’Vll 2W7

i (0, 7; w) +ZZ H 2zs1n ”wl)>

]lnl

= exp

= exp (7”(4 (0, 7;w +ZZ H "wl (%))

40



= exp <7Ti<4<0, Tw) 4 Z Z % (_81Z)n H Sln(lnw)> :

j=1 n=1 I#] wj

When w = (71, 72,73,1) and © = (71 + 72 + 73+ 1) /2, Theorem 4.4 implies that S;(z;w) = 1.
Thus

4 e’}
—87C (0, 75 0) + Y Z H ey

j=1 n=1 I#j "-’J

This leads to

Z nsin(mnm ) sin(rnry) sin(mnrs)

n=1
s (1)
= 8 0,7;w) —
Tel0ri) ;nw%mm ) ()

< (=" - (=1)"
; n sin(m %L ) sm( )sin(ﬂ”T—T;) B Z nsin(W"T—?)sin(ﬂ”T—?)sin(W%)'

n=1

Proof of Theorem 1.4. We compute the product (7.1) for
w = (W1, Wy, W3, W4> — (7-17 T2, T3, 1)

and

! ++m+1
= 5 .
The factor for j = 4 in the double sum is

o0 oo 0o o0

S S A S S S el 4 o + )

(1 _ e(nf]—l)) n1=0n9=0 n3=0

n=1 n

=

=1

= —log H H H (1 —e(x 4+ nymy + namo + n373))

n1=0n2=0n3=0

LTI (1o (D) (e D) (1))

n1=0n2=0n3=0

= —log F(11, 7, 73).
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For j = 1,2, 3, we can similarly deal with the terms involving w;/w; (I < j) as Im(w;/w;) > 0.
But in the other cases when [ > j, we have Im(w;/w;) < 0 and compute as follows:

1 el) &) 1
;ﬁll;[(l—e("w—“j)) ; ; n ll;[(l—e(ﬁ—?))ll;[(l—e("w—?))
= e(2) o e(=2) i
RS EeE iere
> e(27) n(n; + 1)w; nnwj
L () IS ()

n;=0

I>j J I<j
1#] J J

n;=0
1#5

; s + l)wl (nl + l)wl
— (1) >k 1 _ (nl 2 2
(—1) og[[{1+e| -2 =2 +> — >

I>j J I<j J
ogF (2,2,-1)  (j=3)
= {-logF(2,-1,-2) (=2
g F (—L,-2,-2) (j=1).
Hence from Theorem 4.4 and (7.1) we have

F(T_l 2 _L>F<_L _T2 _E>
1= Sy(z;w) = emica(0.eiw) ninl T n.onl o
F(T17T27T3)F (EJ_L _B>

8 The graph of Sy(r; w)

Throughout this section we assume w = (w1, ws, w3, wy) € R* with 0 < w; < wy < w3 < wy,
and put S(z) = Sy(z;w) for simplicity. We recall the notation |w| := w; + ws + w3 + wy.
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Lemma 8.1 At least one of the following ten special values are greater than one:

S(%) (j=1,2,3,4), S(%) (i,7=1,2,3,4, i<j).

Proof. By Proposition 2.4 in [KK1] we have for any [ = 1,2, 3,4
Ss(z;w(l)) = Sy(z;w)Ss(r + wiyw) ™t = Sy(z;w)Sy(|w| — 7 — wi;w).

Taking z = |w(l)|/2 leads to

By Kurokawa’s recent result S (%, w(l)) < 1 proved in [K3], we have
|w (@]
S|l—] <1
(*
for any [ = 1,2,3,4. Thus in the formula (1.2) with N = 2

() [ 1(5) (115252

1<i,j<4 1<i,j,k<4
i<j i<j<k

the third product in the left hand side is less than 1. Thus the remaining part must be
greater than 1. Hence we have the desired conclusion. 1

(5 ()<

S(z) = Ty(r;w) 'Ty(Jw| — 7;w)

Lemma 8.2

Proof. By definition we have

with

[y(z;w) = exp (%(4(071"; w))

for
(s, r;w) = Z (niwr + naws + naws + naws + )%,

ni,n2,n3,m4>0

We find that (4(s, z;w) is absolutely convergent in Re(s) > 4 and that it has a meromorphic
continuation to all s € C. Moreover (4(s, z;w) is holomorphic at s = 0.
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Since

logS(xz) = —logly(z;w) + logTy(jw| — z;w)
0 0
= —%Q(O,J%w) + %Q(O? w| — ;W)
we have o o2 52
g(f) = —asaszx(Oam;w) - m@(oa lw| — z;w).
Hence

S\ o ik
<§> (SL’) - _WQ(O,L w) + W@(O, ]w| — X w)

and differentiating repeatedly gives
g 4) o6 o
(E) (ili') = —WC4(O,£L',L‘J) — WQ(O, ’(.U| —.Z',(AJ)

= 4! ( Z (n1w1 + NoWwo + N3ws + NyWwy4 + 37)75

ni,n2,n3,m4>0

+ Z (m1w1 + Mmowg + msaws + mywy — $)5> ,

mi,ma,m3,mq>1
where we use the relation

85

%@(s, Tyw)=(=8)(—=s—1)(—=s—=2)(—=s = 3)(—s — 4)(u(s + 5, 7;w)

coming from

0 0

%Q(s, Tw) = — ( Z (nqwi1 + naws + nN3ws + nywy + x)_5>

ni,n2,n3,nge>0

= —s Z (n1wy + Nows + Naws + nwy + 1) 5!

n1,n2,n3,n4>0

= —sG(s+1,zw).

(%) Y () >0 (8.1)

) ()

Thus

in0 <z < |w|and



S
o
€]

Ao e el
RPN
=)

T [ =Tol~
()1 1N\ /

(( 1) and (8.2) we see as in the above table that (%)(3) () <0for 0 <z < l%' and

(z) > 0 for ¥l < 2 < |w|, and consequently that (%)” (x) takes the minimum at

By
(%) 5

2
For proving (%)H (‘%') < 0, we assume (%)” (";—‘) > 0 to have a contradiction as

below. By the above table, the assumption (%)” (%) > 0 implies that (%)” (z) > 0 for

0 < x < |w|. Hence (i)/ (x) is increasing throughout the interval. Proposition 2.4 in [KKI]

S
shows that
x

S(z) = x O(1) (8.3)

z = |wl

with O(1) part being a nonzero holomorphic bounded function as + — 0 and # — |w|. Thus

. S\

AW
li — = 00.
xi»H:A(S) (x) = o0

Therefore there exists a unique v € (0, |w|) such that (%), () = 0. This means that (%) (x)
takes the minimum at x = ~. If this minimum is non-negative, then (%) () > 0 and so

S’(xz) > 0. This shows S(z) is increasing, which contradicts the previous lemma, because
Theorem 1.1 says
o
S{— | =1
(5

Hence the minimum is negative. Here we again use (8.3) to get

S’

and

Then there exist v; € (0,7) and 7, € (7, |w|) such that %(71) = é(’)/g) = 0, and we see
that %(x) is positive in [0,71) U (72, |w|], and negative in (71,72). As S(xz) > 0 in the
whole interval, we also determine the sigunature of S’(x) to obtain the behavior of S(z).
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Since S(x)S(Jw| — z) = 1, it holds that logS(z) is symmtric with respect to the point
(lw]/2, 0). Thus 71 < |w|/2 < 72, and consequently there exists some ¢ € (0, |w|/2) such
that 0 < S(z) < 1inz € (0,¢) and 1 < S(x) in z € (¢, |w|/2). This implies that if two
points z, 2’ € (0, |w|/2) satisfy that S(z) < 1 and that S(z’) > 1, then it must hold that
x < x’. This contradicts the previous lemma, taking into account that

1
2
5 (%) s, (%Q = 5, (W;(M,w,m) <1

which is shown by Kurokawa [K3]. Hence the conclusion. 1

Theorem 8.1 The function S(x) = Sy(x;w) has four extremal values in the interval (0, |w]).
More precisely each of the intervals (0,|w|/2) and (|w|/2,|w|) has both a mazimal and a
minimal points.

Proof. By the previous lemma and by (8.3) we have the following table.

T 0 % |w|
(%)N +oo | N\, - /| +oo
(2" +0—| — | -0+
(%)/ —co | SN 0N\ | o0
() | 0| =0+ 0] -0+]+00

2 [+oo |\ / N/ | Foo

As shown in the proof of the previous lemma, S(z) cannot be monotone increasing in
(0, |w|/2). So the minimal value of % in (0, |w|/2) should be negative. Therefore we have
the following table:

S
o
€]

, 2 W)
51400 |[+0 -0+ 4+ ][+0 — 0+ |40
S’ +0 -0+ +|+0 -0+
S1 0 SN L NS [+
The proof is complete. 1

Theorem 8.2 Let o, 5 € (0,|w]|/2) satisfy S(a) = S(B) = 1 with o < B as shown in Figure
1 in Section 1. Then for 0 < wy < wy < w3 < wy, the following statements concerning the
location of 2-division points are true.

(1) E‘lt le)ast one of % (j = 1,2,3,4) and wi;wj (1,7 = 1,2,3,4, i < j) lie in the interval
a, ().
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(2) “ades > o
3) Both “Atests gp @2t@stes [ie i the interval (3, |w]/2).
2 2

Proof. The first assertion follows from Lemma 8.1 and the previous theorem.

The second assertion follows from the first one, because % is the largest among the
ten points given in (1), and in particular it is greater than the element in («, ().

Then by (2), since both &1destes apd @2testen are greater than 74 they are both
greater than . On the other hand by Kurokawa’s result [K3], it holds that .S (W) <1
and S (M) < 1, as shown at the end of the proof of Lemma 8.1. Hence we obtain the

2
last assertion. ]
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