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1 Introduction

In 1948, Casimir used the value

ζ(−1) = − 1
12

(1.1)

for the Riemann zeta function

ζ(s) =

∞∑
n=1

1
ns

for calculating a certain force between two metal objects; see Casimir [C], Hawking
[Haw], and Kurokawa-Wakayama [KW1]; we remark thatζ(−1) appears in the one
dimensional case and thatζ(−3) is used in the ordinary three dimensional situation.
The value (1.1) represents the value of a divergent series

1+ 2+ 3+ · · · .

When a zeta function

Z(s) =
∑
λ

λ−s

is given, we callZ(−1) its Casimir energy, which is named after the work of Casimir.
From various viewpoints, the signature of the Casimir energy is meaningful in the

sense that it reflects certain dynamical and arithmetical properties. For example, the
following proposition is known.
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Proposition 1.1.LetK be a finite extension ofQwith its integer ringOK . The Casimir
energy for the Dedekind zeta function

ζK(s) =
∑

I⊂OK
ideal̸=0

N(I)−s

withN(I) = |OK/I| is as follows:

ζK(−1) is


positive ⇐⇒ K is totally real and[K : Q] is even,

negative ⇐⇒ K is totally real and[K : Q] is odd,

0 ⇐⇒ K is not totally real.

For example,ζ(−1) = −1/12 is actually negative forK = Q.
In this paper, we prove an analog of Proposition 1 for the absolute Weil zeta func-

tion. We recall briefly the history of absolute mathematics. The absolute mathematics
has been studied in many papers after Tits[T] (1957) as in the papers listed in the refer-
ences. It is recommended to read the excellent survey of Manin [M] published in 1995.
Early publications are [K1](1992) and [KOW](2003); see also [CC], [D], [Har], [K2],
[KO], [KW2], and [S]. The absolute zeta functions were studied recently in papers
[DKK] and [KKK]. Here we describe the definitions:

LetµµµN = {z ∈ C | zN = 1} (N = 1,2,3, ...) and put

F1N = µµµN ∪ {0}.

The absolute Weil zeta function is defined in [DKK] by

ζF1N
(s) = exp

( ∞∑
m=1

|Hom(F1N ,F1m)|
m

e−ms

)
.

More generally, for a fintie abelian groupG, we putF1[G] = G ∪ {0}, which is a
multiplicative monoid (anF1-algebra). We define the absolute Weil zeta function of
F1[G] by

ζF1[G] = exp

( ∞∑
m=1

|Hom(F1[G],F1m)|
m

e−ms

)
.

In particular, we haveF1N = F1[µµµN ].
These absolute zeta functions are constructed forF1-algebras, whereF1 is “the field

with one element". Precisely speaking we understand that “anF1-algebra" means “a
multiplicative monoid with 0". EspeciallyF1 = {1,0}.

These absolute zeta functions are considered as absolute version of the classical
Weil (or congruence) zeta functions. In the classical case, we are looking at the number
of rational points over finite fields. In the absolute case, we look at the number of
rational points over finite extensions ofF1.
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In general they satisfy analytic continuations, functional equations and the asso-
ciated Riemann hypothesis. Special values at negative integers are considered to be
absolute Casimir energies. Here we restrict to the zeta function of a finite extension of
F1.

For describing our earlier results, we introduce the absolute Frobenius operatorΦG

for a finite abelian groupG, which operates onµµµN2 with |G| = N . First whenG =
µµµN , we define

ΦG : µµµN2 ∋ α 7−→ αN+1 ∈ µµµN2.

For general cases, put
G ∼= µµµN1 × · · · ×µµµNr

with N = N1 · · ·Nr. Then

ΦG = ΦN1,...,Nr : µµµN2
1
× · · · ×µµµN2

r
−→ µµµN2

1
× · · · ×µµµN2

r

is defined by the Kronecker tensor product

ΦG = ΦN1 ⊗ · · · ⊗ ΦNr .

In [DKK] and [KKK], we proved the following theorem:

Theorem 1.2.For any finite abelian groupG, the following properties hold:

(i) ζF1[G](s) has analytic continuation to all the complex numbers.

(ii) ζF1[G](s) satisfies the associated functional equation

ζF1[G](−s) = w(G)e−|G|sζF1[G](s),

wherew(G) is a complex number of modulus 1.

(iii) ζF1[G](s) satisfies the analogue of the Riemann hypothesis. Namely, all singular-
ities ofζF1[G](s) are on the lineRe(s) = 0.

(iv) ζF1[G](s) has the determinant expression

ζF1[G](s) = det
(
1− ΦGe

−s
)−1/|G|

. (1.2)

We define the normalized Casimir energy for the absolute zeta function of anF1-
algebraA by

ζA(−1)|End(A)|.

Our main result is as follows:

Theorem 1.3.LetA be a fintie abelianF1-algebra. Then we have

ζA(−1)|End(A)| > 0 ⇐⇒ 4 | [A : F1].
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2 Proofs

We start by proving a special case whereA = F1N . The following Lemma will be
useful in the proof.

Lemma 2.1.The integer

a(N) =
∑
n|N

N

n
φ(n)

is even, if and only if4|N .

Proof.The sequencea(N) is a convolution ofb(N) = N andc(N) = φ(N), since

(b ∗ c)(N) =
∑

mn=N

b(m)c(n) =
∑
n|N

b

(
N

n

)
c(n) =

∑
n|N

N

n
φ(n) = a(N).

Because bothb(N) andc(N) are multiplicative, the convolutiona(N) is also multi-
plicative. Therefore

a(N) =
∏
p|N

p: prime

a(pordp(N)).

Hencea(N) is odd if and only ifa(pordp(N)) is odd for allp|N . By definition it holds
thata(1) = 1 and

a(pl) =
l∑

k=0

pl−kφ(pk). (2.1)

We will examine the condition for (2.1) being odd. Whenp is odd, we compute

a(pl) = plφ(1) +
l∑

k=1

pl−kφ(pk)

= pl +
l∑

k=1

pl−kpk−1(p− 1)

= pl + (p− 1)pl−1l,

which is always odd. Whenp = 2, we compute

a(2l) = 2l + 2l−1l

=

{
odd (l = 1)

even (l ≥ 2).

Consequently, (2.1) is odd if and only if eitherp is odd or(l, p) = (1,2). In other
words, (2.1) is even if and only if ord2(N) ≥ 2, which equivalently is 4|N .
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Proposition 2.2.
ζF1N

(−1)N > 0 ⇐⇒ 4 | N.

Proof.By [DKK] we have an Euler product expression

ζF1N
(s)N =

∏
n|N

(1− e−ns)−
N
n
φ(n).

By this expression we have

sgn(ζF1N
(−1)N ) = (−1)

∑
n|N

N
n
φ(n)

=


1 if

∑
n|N

N

n
φ(n) is even,

−1 if
∑
n|N

N

n
φ(n) is odd.

Then by the previous lemma, it holds that

sgn(ζF1N
(−1)N ) =

{
1 if 4|N,

−1 if 4 ̸ |N.

Proof of Theorem 1:
By the determinant expression (1.2) proved in [KKK], we have

ζF1N
(−1)N = det(1− ΦNe)−1

= det((−ΦNe)(Φ−1
N e−1 − 1))−1

= (−1)N
2
det(ΦN )e−N2

det(1− ΦNe−1)−1

= (−1)N
2
det(ΦN )e−N2

ζF1N
(1)N

= (−1)N
2
det(ΦN )e−N2 ∏

n|N

(1− e−n)−
N
n
φ(n).

Hence

sgn(ζF1N
(−1)N ) = (−1)N

2
det(ΦN )

= (−1)N
2
sgn(ΦN ).

By the preceding proposition, this is negative if and only if 4̸ |N . Thus

sgn(ΦN ) =

{
1 if N ≡ 1,3 (mod 4),

−1 if N ≡ 2 (mod 4).
(2.2)
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By [KKK] we have the determinant expression

ζF1[G](s)
N = det(1− ΦGe

−s)−1.

Thus we compute

sgn(ζF1[G](−1)N ) = (−1)N
2
det(ΦN1,...,Nr)

= (−1)N
2
sgn(ΦN1)

N2
2 ···N

2
r · · · sgn(ΦNr)

N2
1 ···N

2
r−1.

First when all ofN1, ..., Nr are odd, we find by (2.2) that sgn(ζF1[G](−1)N ) = −1.
Next when 2|N1 · · ·Nr but 4 ̸ |N1 · · ·Nr, which means only one ofNj is 2 (mod 4)

and all others are odd, we see again from (2.2) that sgn(ζF1[G](−1)N ) = −1.
Finally, when 4|N1 · · ·Nr, it holds that sgn(ζF1[G](−1)N ) = 1.
This completes the proof of Theorem.
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