
Absolute zeta functions

Shin-ya Koyama and Nobushige Kurokawa

Abstract. We first survey the absolute tensor product. In particular we find that zeta
functions which are meromorphic of order r are expected to have Euler factors expressed in
terms of the elliptic gamma function of order r−1. We give some observation and evidence for
this phenomenon. Secondly, we generalize the absolute Weil type zeta function of Deitmar-
Koyama-Kurokawa to noncommutative versions. We obtain the determinant expressions and
give many examples.

1 Zeta Functions of Tensor Products over F1

We recall the construction of the absolute tensor product, which is called the Kurokawa
tensor product by Manin [23]. We refer to [18] and [22] for details.

Let

Zj(s) =
∏⨿
ρ∈C

(s − ρ)mj(ρ)

= exp

(
− ∂

∂w

∣∣∣∣
w=0

∑
ρ∈C

mj(ρ)

(s − ρ)w

)
be “zeta functions” expressed as regularized product, where

mj : C → Z

denotes the multiplicity function for j = 1, ..., r. The absolute tensor product (Z1 ⊗ · · · ⊗
Zr)(s) is defined as

(Z1 ⊗ · · · ⊗ Zr)(s) =
∏⨿

ρ1,··· ,ρr∈C

(s − (ρ1 + · · · + ρr))
m(ρ1,··· ,ρr)

with

m(ρ1, · · · , ρr) = m1(ρ1) · · ·mr(ρr) ×


1 Im(ρj) ≥ 0, (j = 1, ..., r)
(−1)r−1 Im(ρj) < 0, (j = 1, ..., r)
0 otherwise.
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This definition originates from [15]. We refer to the excellent survey of Manin [23]. The
notation of the regularized product is due to Deninger [9]. See [11] concerning the needed
regularized products. The absolute tensor product was studied by Schröter [24] in the name
of the “Kurokawa tensor product.”

We are especially interested in the case of Hasse zeta functions Zj(s) = ζ(s, Aj) for
commutative rings A1, ..., Ar of finite type over Z. We recall that the Hasse zeta function
ζ(s, A) of a commutative ring A is defined to be

ζ(s, A) =
∏
m

(1 − N(m)−s)−1

= exp

(∑
m

∞∑
k=1

1

k
N(m)−ks

)
,

where m runs over maximal ideals of A and N(m) = #(A/m). This is also written as

ζ(s, A) = exp

( ∑
p:primes

∞∑
m=1

|Homring(A,Fpm)|
m

p−ms

)
.

For simplicity we write

ζ(s, A1 ⊗ · · · ⊗ Ar) = ζ(s, A1) ⊗ · · · ⊗ ζ(s, Ar).

It holds that ζ(s, A1 ⊗ · · · ⊗ Ar) has the following additive structure on zeros and poles: if
ζ(sj, Aj) = 0 or ∞ and Im(sj) (j = 1, ..., r) have the same signature, then

ζ(s1 + · · · + sr, A1 ⊗ · · · ⊗ Ar) = 0 or ∞.

Such an additive structure was crucial in the study of Hasse zeta functions of positive
characteristic (congruence zeta functions) pursued by Grothendieck [12] and Deligne [6],
where Euler products were important to restrict the region of zeros and poles for our reaching
to the analogue of the Riemann Hypothesis.

We expect that our multiple zeta functions also have Euler products of the following
form:

ζ(s, A1) ⊗ · · · ⊗ ζ(s, Ar) =
∏

(m1,...,mr)

H(m1,...,mr)(N(m1)
−s, ..., N(m1)

−s)

where mi runs over the maximal ideals of Ai and H(m1,...,mr)(T1, ..., Tr) is a power series in
T1,...,Tr of the constant term 1 with a possible degeneration at (m1, ...,mr), where N(mi) =
N(mj) for some i ̸= j. More generally we expect that the multiple zeta function Z1(s) ⊗
· · · ⊗ Zr(s) has an Euler product

Z1(s) ⊗ · · · ⊗ Zr(s) =
∏

(p1,...,pr)∈P1×···×Pr

H(p1,...,pr)(N(p1)
−s, ..., N(pr)

−s)
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when each zeta function Zj(s) has an Euler product

Zj(s) =
∏
p∈Pj

Hj
p(N(p)−s)

and a functional equation; here Hj
p(T ) is a power series in T and H(p1,...,pr)(T1, ..., Tr) is a

power series in (T1, ..., Tr) with a possible degeneration at (p1, ..., pr), where N(pi) = N(pj)
for some i ̸= j.

In [18] we investigated the absolute tensor product ζ(s,Fp)⊗ ζ(s,Fq) for primes p and q
by using a signed double Poisson summation formula, where ζ(s,Fp) = (1−p−s)−1. In other
words we constructed a zeta function having zeros (or poles) at sums of poles of ζ(s,Fp) and
those of ζ(s,Fq). We state the results as follows. Their proofs and some refinements were in
[18] and [19]. For simplicity we use the notation F (s) ∼= G(s) for functions F (s) and G(s)
to indicate that F (s) = eQ(s)G(s) for some polynomial Q(s).

Theorem 1.1 Let p and q be distinct prime numbers. Define the function ζp,q(s) in Re(s) >
0 as follows:

ζp,q(s) := exp

− i

2

∞∑
n=1

cot
(
πn log p

log q

)
n

p−ns − i

2

∞∑
n=1

cot
(
πn log q

log p

)
n

q−ns

−1

2

∞∑
n=1

1

n
p−ns − 1

2

∞∑
n=1

1

n
q−ns

)
.

Then the function ζp,q(s) has the following properties:

(0) It converges absolutely in Re(s) > 0.

(1) The function ζp,q(s) has an analytic continuation to all s ∈ C as a meromorphic function
of order two.

(2) All zeros and poles of ζp,q(s) are simple and located at

s = 2πi

(
m

log p
+

n

log q

)
,

where (m,n) is either a pair of nonnegative integers or a pair of negative integers. Indeed
it gives a zero or pole according as they are nonnegative or negative.

(3) We have the identification

ζp,q(s) ∼= ζ(s,Fp) ⊗ ζ(s,Fq).
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(4) The function ζp,q(s) satisfies a functional equation:

ζp,q(−s) = ζp,q(s)
−1(pq)

s
2 (1 − p−s)(1 − q−s)

× exp

(
i log p log q

4π
s2 − πi

6

(
log q

log p
+

log p

log q
+ 3

))
.

When p = q the result is as follows:

Theorem 1.2 Let

ζp,p(s) := exp

(
i

2π

∞∑
n=1

1

n2
p−ns −

(
1 − i log p

2π
s

) ∞∑
n=1

1

n
p−ns

)

in Re(s) > 0. Then the function ζp,p(s) has the following properties:

(0) It converges absolutely in Re(s) > 0.

(1) The function ζp,p(s) has an analytic continuation to all s ∈ C as a meromorphic function
of order two.

(2) All zeros and poles of ζp,p(s) are located at

s =
2πin

log p
,

which gives a zero or pole of order |n + 1|, according as n is a nonnegative or negative
integer.

(3) We have the identification

ζp,p(s) ∼= ζ(s,Fp) ⊗ ζ(s,Fp).

(4) The function ζp,p(s) satisfies a functional equation:

ζp,p(−s) = ζp,p(s)
−1ps(1 − p−s)2 exp

(
i(log p)2

4π
s2 − 5πi

6

)
.

The proof of Theorems 1.1 and 1.2 were done by constructing the signed double Poisson
summation formula, and the theory of multiple sine functions developed in [17] are essential.

From our viewpoint, it is very interesting to see the nature of
∏

p,q ζp,q(s). Unfortunately,
however, it does not converge even for sufficiently large Re(s). Our “α-version” ζα

p,q(s)
treated below remedies the situation. In passing we find the analyticity of the diagonal
Euler product:
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Theorem 1.3 Let
Z(s) =

∏
p

ζp,p(s).

Then, Z(s) is absolutely convergent in Re(s) > 1, and it has an analytic continuation with
singularities to Re(s) > 0 with the natural boundary Re(s) = 0.

Later in [19] we constructed “the double Riemann zeta function” ζ(s,Z) ⊗ ζ(s,Z) by
establishing the signed double explicit formula which is stated in the following theorem. It
generalizes the signed double Poisson summation formula used in the proof of Theorems 1.1
and 1.2.

For simplicity put ξ(s) = ζ̂(s + 1
2
) = ζ̂(s + 1

2
,Z) for ζ̂(s) = ΓR(s)ζ(s) with ΓR(s) =

π−s/2Γ(s/2). The functional equation of ζ(s) is written as ξ(s) = ξ(−s). We recall that
nontrivial zeros of ζ(s) are zeros in the strip |Re(s− 1

2
)| < 1/2. We denote by 1

2
+ iγ such a

zero, where γ is a complex number in −1/2 < Im(γ) < 1/2.
Hereafter let h(t) be an odd regular function in |Re(t)| < 1 satisfying h(t) = O(|t|−3) as

|t| → ∞. We put Hα(t) := h(2α + it) and

H̃(u) :=

∫ ∞

−∞
H(t)eitudt.

Theorem 1.4 Let 1/2 < α < 1. We have∑
Re(γ1),Re(γ2)>0

H0(γ1 + γ2) =
∑
p,q
p ̸=q

Hα
p,q +

∑
p

Hα
p,p +

∑
p

Hα
p,∞ + Hα

∞,∞ + Hα
0 ,

where the sum in the left hand side is taken over pairs (1
2

+ iγ1,
1
2

+ iγ2) of nontrivial zeros
of the Riemann zeta function, the sum in the right hand side is taken over pairs of distinct
primes p, q or primes p, and we define for pairs of distinct primes p, q as

Hα
p,q =

i

4π2

∑
m,n

log p log q

log(pmqn)

1

pm(α+ 1
2
)qn(α+ 1

2
)

(
H̃0(−m log p) + H̃0(−n log q)

)
(1.1)

+
i

4π2

∑
m,n

log p log q

log(pm

qn )

1

pm(α+ 1
2
)qn(α+ 1

2
)

(
H̃α(−m log p) − H̃α(−n log q)

)
, (1.2)

and for a prime p,

Hα
p,p =

i

4π2

∑
m,n

log p

(m + n)p(m+n)(α+ 1
2
)

(
H̃0(−m log p) + H̃0(−n log p)

)
(1.3)

+
i

4π2

∑
m̸=n

log p

(m − n)p(m+n)(α+ 1
2
)

(
H̃α(−m log p) − H̃α(−n log p)

)
(1.4)

+
1

4π2
(log p)2

∞∑
m=1

p−2m(α+ 1
2
)t̃Hα(t)(−m log p), (1.5)
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Hα
p,∞ = − 1

2π2

∞∑
m=1

log p

pm(α+ 1
2
)

∫ ∞

−∞
p−imtHα(t)

∫ t

0

pimt′ Γ
′
R

ΓR

(
α +

1

2
+ it′

)
dt′dt (1.6)

− 1

2π2

∞∑
m=1

log p

pm(α+ 1
2
)

∫ ∞

−∞
H0(t)

∫ t

0

Re

(
pim(t−t′) Γ

′
R

ΓR

(
α +

1

2
+ it′

))
dt′dt, (1.7)

Hα
∞,∞ =

1

4π2

∫ ∞

−∞
Hα(t)

∫ t

0

Γ′
R

ΓR

(
α +

1

2
+ it1

)
Γ′

R

ΓR

(
α +

1

2
+ i(t − t1)

)
dt1dt (1.8)

+
1

4π2

∫ ∞

−∞
H0(t)

∫ t

0

Γ′
R

ΓR

(
α +

1

2
+ it1

)
Γ′

R

ΓR

(
α +

1

2
− i(t − t1)

)
dt1dt, (1.9)

and

Hα
0 = −α

π

∫ π

0

∑
Re(γ1)>0

h(iγ1 + αeiθ)
ξ′

ξ
(αeiθ)eiθdθ (1.10)

− α2

4π2

∫ π

0

∫ π

0

h(αeiθ1 + αeiθ2)
ξ′

ξ
(αeiθ1)

ξ′

ξ
(αeiθ2)ei(θ1+θ2)dθ1dθ2, (1.11)

where m,n ∈ Z, m,n ≥ 1.

Notice that only pairs of zeros in the upper (or lower) half plane are counted in the left
hand side of Theorem 1.4. The method of Cramér [5] is important in the proof.

For defining the (p, q)-Euler factors, we put

h(t) =
1

(t + s)2
− 1

(t − s)2
(1.12)

in Theorem 1.4. We denote by p, q any (finite or infinite) places. We call ζα
p,q(s) a (p, q)-Euler

factor of the double Riemann zeta function ζ(s,Z) ⊗ ζ(s,Z) if and only if it holds that

ζα
p,q(s + 1) = exp

(∫∫
Hα

p,q(s)dsds

)
.

We also denote the remainder factor ζα
0 (s) by

ζα
0 (s + 1) = exp

(∫∫
Hα

0 (s)dsds

)
.

Note that these definitions implies some ambiguity emerged from the integral constants,
that is the factor exp(Q(s)) with Q(s) a polynomial with deg(Q) ≤ 2. The double Riemann
zeta function ζ(s,Z) ⊗ ζ(s,Z) is expressed by an Euler product over the pairs of places
(p, q). In the following theorem we denote the dilogarithm of order r by Lir(u) =

∑∞
n=1

un

nr

(r = 1, 2, 3, ...).
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Theorem 1.5 The (p, q)-Euler factors of the double Riemann zeta function ζ(s,Z)⊗ζ(s,Z)
are described as follows:

(1) For distinct prime numbers p and q, we put

ζα
p,q(s) = exp

(
1

πi

∑
m,n

(log p)(log q)

(m log p)2 − (n log q)2(
cosh(mα log p)

qn(α+ 1
2
)

p−m(s− 1
2
) +

n log q

m log p

sinh(mα log p)

qn(α+ 1
2
)

p−m(s− 1
2
)

−m log p

n log q

sinh(nα log q)

pm(α+ 1
2
)

q−n(s− 1
2
) − cosh(nα log q)

pm(α+ 1
2
)

q−n(s− 1
2
)

) )

in Re(s) > α + 1
2
, where the sum is taken over all pairs of all positive integers m and

n. Then it is a (p, q)-Euler factor of the double Riemann zeta function, and it has an
analytic continuation to the entire plane.

(2) For a prime number p, a (p, p)-Euler factor is given as follows in Re(s) > α + 1
2
:

ζα
p,p(s) = exp

(
2

πi

∑
m̸=n

p−m(s− 1
2
)−n(α+ 1

2
)

m2 − n2

(
cosh(mα log p) +

n

m
sinh(mα log p)

)
(1.13)

+
1

2πi

(
(log p)(s − 1 − 2α) log(1 − p−s) − Li2

(
p−s

)
+ Li2

(
p−s−2α

)))
.(1.14)

It has an analytic continuation to the entire plane.

(3) The (p,∞)-factor ζα
p,∞(s) of the double Riemann zeta function has an analytic continu-

ation to the entire plane, and moreover
∏

p ζα
p,∞(s) has an analytic continuation to the

entire plane with possible singularities at s = 1
2
− 2k ± α (k ≥ 0), 1 − 2k (k ≥ 0), −2k

(k ≥ 1), ρ − 2k (k ≥ 0), 1
2

+ ρ ± α, 3
2
± α with ρ any nontrivial zero of ζ(s).

(4) The (∞,∞)-factor ζα
∞,∞(s) of the double Riemann zeta function is analytic with possible

singularities at s = −2n, −2n + α + 1
2

with n = 0, 1, 2, ...

Theorem 1.6 The remaining factor ζα
0 (s) of the double Riemann zeta function is an ana-

lytic function on C with possible singularities at s = ρ + 1
2

+ sgn(Im(ρ))αeiθ with 0 ≤ θ ≤ π
for any nontrivial zero ρ of ζ(s) and at s belonging to |s − 1| ≤ 2α.

In the next theorem we use the half Riemann zeta function ζ+(s) studied in [11] and the
multiple gamma function Γr(s) of Barnes [4].
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Theorem 1.7 The Euler product for the double Riemann zeta function

ζ(s,Z) ⊗ ζ(s,Z) ∼=

(∏
p,q

ζα
p,q(s)

)
ζα
0 (s)


∞∏

m=1

ζ+(s + 2m)

ζ+(s − 1)


2

Γ2

(s

2

)−1

Γ1(s)
2s(s − 2)

is absolutely convergent in Re(s) > α + 3
2
, where (p, q) runs through pairs of all (finite or

infinite) places. It has an analytic continuation (with singularities) to the entire plane and
satisfies a functional equation between s and 2 − s.

Later Akatsuka [1] successfully eliminated the parameter α from the double Riemann
zeta function. He obtained the (p, q)-Euler factor

ζp,q(s) = exp

(
1

πi

∑
p

∞∑
m=1

∑
q

∞∑
n=1

qn ̸=pm

p−m(s−1)q−n log p

n(m log p − n log q)

− 1

πi

∑
p

∞∑
m=1

∑
q

∞∑
n=1

p−msq−n log p

n(m log p + n log q)

)
,

and proved that the double Euler product

ζ⊗2(s) =
∏
p,q

ζp,q(s)

satisfies the similar property as in Theorem 1.5.
For r ≥ 0 and x, qj ∈ C (j = 1, ..., r) we define the elliptic gamma function of order r by

Gr(x; q1, ..., qr) :=
∏

n1,...,nr≥0

(1 − xqn1
1 · · · qnr

r ). (1.15)

We conventionally put G0(x) = 1 − x. The product in (1.15) is absolutely convergent when
|qj| < 1 for j = 1, ..., r.

The function (1.15) was originally dealt with by Appell [2]. He actually considered

Oq(x; ω1, ..., ωr) =
∏

n1,...,nr≥0

(1 − qn1ω1+···+nrωr+x)

= Gr(q
x; qω1 , ..., qωr)

with Re(ωj) > 0 (j = 1, ..., r) and 0 < q < 1.
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The elliptic gamma function (1.15) has another expression (Kurokawa-Wakayama [21,
Proposition 2.1]).

Gr(x; q1, ..., qr) = exp

(
−

∞∑
m=1

xm

m(1 − qm
1 ) · · · (1 − qm

r )

)
. (1.16)

The sum in (1.16) is absolutely convergent for suitable qj ∈ C outside of |qj| < 1. For
example, it is valid for qj = e2πiαj with αj ∈ R
Z such that either αj ∈ (Q \Q)∩R (Roth) or αj = log p/ log q with p and q distinct primes
(Baker).

In [21, Theorem 1.1] Kurokawa and Wakayama proved the following theorem.

Theorem 1.8 Let p1, ..., pr be distinct prime numbers. Then for Re(s) > 0,

ζ(s,Fp1) ⊗ · · · ⊗ ζ(s,Fpr)

=

(
Gr−1

(
p−s

1 ; exp

(
2πi log p1

log p2

)
, · · · , exp

(
2πi log p1

log pr

))
× · · ·

× Gr−1

(
p−s

r ; exp

(
2πi log pr

log p1

)
, · · · , exp

(
2πi log pr

log pr−1

)))(−1)r

.

Here, Gr−1 is considered under the expression (1.16) and the convergence comes from a
delicate transcendency result of Baker [3, Theorem 3.1]

In particular, when r = 2, we have for distinct prime numbers p and q

ζ(s,Fp) ⊗ ζ(s,Fq) = G1

(
p−s; exp

(
2πi log p

log q

))
G1

(
q−s; exp

(
2πi log q

log p

))
.

As ζ(s,Fp1)⊗· · ·⊗ ζ(s,Fpr) is a meromorphic function of order r, we reach the following
expectation.

Expectation.
Zeta functions which are meromorphic of order r have Euler products with Euler factors

being expressed in terms of Gr−1.

Example. 1.1 (Dedekind zeta functions (r = 1))

Let K be a number field. The Dedekind zeta function of K is

ζK(s) =
∏

p

(1 − N(p)−s)−1 =
∏

p

G0(N(p))−1,

where p runs through all maximal ideals of OK and N(p) = |OK/(p)|.
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Example. 1.2 (Selberg zeta functions for SL(2,R) (r = 2))

Let Γ ⊂ SL(2,R) be a discrete subgroup. The Selberg zeta function of Γ is

ZΓ(s) =
∞∏

n=0

∏
p

(1 − N(p)−s−n) =
∏

p

G1(N(p)−s; N(p)−1),

where p runs through all primitive hyperbolic conjugacy classes of Γ, and N(p) is the larger
square of the eigenvalues of p.

Example. 1.3 (Selberg zeta functions for SL(2,C) (r = 3))

Let Γ ⊂ SL(2,C) be a discrete subgroup. The Selberg zeta function of Γ is

ZΓ(s) =
∏

p

∏
k≥0, l≥0

k≡l (mod νp)

(1 − a(p)−2ka(p)
−2l

N(p)−s),

where p runs through certain hyperbolic conjugacy classes of Γ, the eigenvalues of p are
denoted by a(p) and a(p) with |a(p)| > 1, and N(p) = |a(p)|2. The symbol νp is defined as
νp = |(Γp)tor|, the order of the torsion of the centralizer of p in Γ. For such hyperbolic classes
p that νp = 1, the Euler factor has the form

∞∏
l=0

∞∏
k=0

(1 − a(p)−2ka(p)
−2l

N(p)−s) = G2(N(p)−s; a(p)−2, a(p)
−2

).

2 Absolute Weil Zeta Functions

For a group G we denote F1[G] = G ∪ {0}, where 0 is an element satisfying 0 · g = g · 0 = 0
for any x ∈ G. For a positive integer m ≥ 1, we denote

F1m = F1[µµµm]

= {0} ∪ µµµm

= {0} ∪ {z ∈ C | zm = 1}.

We define an F1-algebra as a multiplicative monoid with 0.
Let 1 ≤ r ∈ Z. For a Z-algebra A, we recall that the noncommutative Hasse zeta function

of A as

ζr
Z(s, A) = exp

( ∑
p: prime

∞∑
m=1

|Hom(A,Mr(Fpm))|
m

p−ms

)
, (2.1)
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where Mr(Fpm) is the ring of matrices over Fpm of size r, and Hom is the set of ring homo-
morphisms.

When r = 1 and A is a commutative finitely generated Z-algebra, the definition (2.1)
coincides with the usual Hasse zeta function. Namely, we have an expression

ζ1
Z(s, A) =

∏
M⊂A

maximal ideal

(1 − N(M)−s)−1

with N(M) = |A/M |. When r ≥ 2 and A is a commutative finitely generated Z-algebra,
Kurokawa [14] and Fukaya [10] study some analogous versions of (2.1).

When A is an F1-algebra, we analogously define

ζr
F1

(s, A) = exp

(
∞∑

m=1

|Hom(A,Mr(F1m))|
m

e−ms

)
, (2.2)

where Hom is the set of monoid homomorphisms.
When r = 1 and A is a finitely generated abelian monoid, which is an F1-algebra, (2.2)

was studied in [8] and [13]. The explicit form and the functional equation of ζF1(s, A) are
given by the following proposition and theorem.

Proposition 2.1 ([8],Proposition 2.1) Assume A = F1[G] = G ∪ {0} with G a finitely
generated multiplicative abelian group of rank r. Put

G ∼= Zr × µµµn1 × µµµn2 × · · · × µµµnk

with n1|n2| · · · |nk. Then

ζF1(s, A) =



∏
d|n

(
1 − e−|d|s)−φ(d)dk−2

1 ···d−1
k for r = 0,

∏
d|n

exp
(

gr(e−|d|s)φ(d)dr+k−1
1 ···dr−1

k

(1−e−|d|s)r

)
for r ≥ 1,

where the notation d|n means that the product is over all tuples

d = (d1, . . . , dk) ∈ Nk

such that d1|n1, d2|n2

d1
,..., dk| nk

d1···dk−1
. Further, we put

|d| = d1 · · · dk

and
φ(d) = φ(d1) · · ·φ(dk).

11



Theorem 2.1 ([13],Theorem 2) (i) Assume A = F1[G] = G ∪ {0} with G a finite
abelian group of order n. Put

G ∼= µµµn1 × µµµn2 × · · · × µµµnk

with n1|n2| · · · |nk and n = n1 · · ·nk. Then

ζF1(s, A) = det
(
1 − ΦAe−s

)−1/n
(2.3)

and the following functional equation holds:

ζF1(−s, A) = w(A)e−nsζF1(s, A),

where w(A) is a complex number of modulus 1 satisfying

w(A) = (−1)n det(ΦA)
1
n ,

and where we define the absolute Frobenius operator ΦA on the group

G(2) = µµµn2
1
× µµµn2

2
× · · · × µµµn2

k

as
ΦA(α1, ..., αk) = (αn1+1

1 , ..., αnk+1
k ). (2.4)

(ii) Assume A = F1[G] = G ∪ {0} with G a finitely generated free abelian group of rank 1.
Put

G ∼= Z × µµµn1 × µµµn2 × · · · × µµµnk

with n1|n2| · · · |nk. Then the following functional equations hold:

ζF1(−s, A) = ζF1(s, A)−1
∏
d|n

e−φ(d)dk−1
1 ···dk .

(iii) If A = F1[G] = G ∪ {0} with G is a finitely generated abelian group of rank r ≥ 2, the
following functional equation holds:

ζF1(−s, A) = ζF1(s, A)(−1)r

.

Above all the determinant expression (2.3) was crutial. By this we proved an analogue
of the Riemann hypothesis as well as a tensor structure of the zeta functions ([13]). We
generalize (2.3) to r ≥ 2 in the following theorem.

12



Theorem 2.2 Assume all prime divisors of n are bigger than r. In other words, we assume
that

p |n =⇒ p > r.

Let A = F1[G] = G ∪ {0} with G a finite abelian group of order n. Then ζr
F1

(s, A) has an
Euler product

ζr
F1

(s, A) =
∏
d|n

(1 − e−ds)
− 1

d
(dr−

P

d′|d
φ(d′)r)

(2.5)

and a determinant expression

ζr
F1

(s, A) = det
(
1 − Φ⊗r

A e−s
)−1/nr

, (2.6)

where ΦA is defined by (2.4) which is a square matrix of size n2, and Φ⊗r
A denotes the

Kronecker tensor power, which is a square matrix of size n2r.

Proof. Put
G ∼= µµµn1 × µµµn2 × · · · × µµµnk

with n1|n2| · · · |nk and n = n1 · · ·nk. We first claim

Hom(A, Mr(F1m)) = (n1,m)r · · · (nk,m)r. (2.7)

Then (2.5) follows from a direct calculation. For proving (2.6), it suffices to prove that

Hom(µµµl,Mr(F1m)) = (l,m)r,

by our considering the image of a generator ζl of each µµµl (l = n1, ..., nk).
Since the image of ζl has to be invertible, it holds that

|Hom(µµµl,Mr(F1m))| = |Hom(µµµl, GLr(F1m))|.

Here GLr(F1m) is the group of invertible matrices in the form of a permutation matrix with
the entry 1 replaced by any element in µµµm.

Denote by α the image of ζl by a homomorphism. By the assumption, α is a diagonal
matrix with diagonal entries in µµµm, because the order of α must be equal to l, not divisible

by any positive integer less than l. Any element α ∈

µµµm · · · 0
...

. . .
...

0 · · · µµµm

 with αl = 1 can be

an image. Thus

|Hom(µµµl,M2(F1m))| =

∣∣∣∣∣∣∣
α ∈

µµµm · · · 0
...

. . .
...

0 · · · µµµm

 : αl = 1


∣∣∣∣∣∣∣ = (l,m)r.

13



This proves (2.7). Then we have

ζr
F1

(s, A) = exp

(
∞∑

m=1

|Hom(A,Mr(F1m))|
m

e−ms

)

= exp

(
∞∑

m=1

(n1,m)r · · · (nk,m)r

m
e−ms

)
.

For proving (2.6), it suffices to show that
∞∑

m=1

nr(n1, m)r · · · (nk,m)r

m
e−ms =

∞∑
m=1

tr((Φ⊗r
A )m)

m
e−ms (2.8)

by taking the logarithm of (2.6). From a general identity tr((A ⊗ B)m) = tr(Am ⊗ Bm) =
tr(Am)tr(Bm), we have

tr((Φ⊗r
A )m) = tr((Φm

A )r).

On the other hand, it holds by [13, Lemma 1] that

tr(Φm
A ) = n |Hom(A,µµµm)| = n(n1,m) · · · (nk,m).

These identities lead to (2.8).

Example. 2.1 For any prime p > r, it holds that

ζr
F1

(s,F1p) = (1 − e−s)−1(1 − e−ps)−
pr−1

p .

By this theorem, it is easily shown that ζr
F1

(s, A) satisfies an analog of the Riemann
hypothesis and the tensor structure concerning zeros and poles. The proofs are the same as
in [13, Theorem 3]. The functional equation is also obtained as follows.

Corollary 1 The zeta function in the preceding theorem satisfies the funcitonal equation

ζr
F1

(−s, A) = ζr
F1

(s, A)(−1)nr

det(ΦA)rnr−2

e−nrs.

Proof. In the previous paper [13, Proposition 1] we obtained the functional equation of the
zeta function ζσ(s) = det(1 − σe−s)−1 of a finite permutation matrix σ over N elements as

ζσ(−s) = (−1)Ndet(σ)e−Nsζσ(s).

Identifying Φ⊗r
A with a permutation matrix over n2r elements, we compute by the theorem

that

ζr
F1

(−s, A) = ζΦ⊗r
A

(−s)
1

nr

=
(
ζΦ⊗r

A
(s)(−1)n2r

det(Φ⊗r
A )e−n2rs

) 1
nr

=
(
ζΦ⊗r

A
(s)(−1)n2r

det(ΦA)rn2(r−1)

e−n2rs
) 1

nr

= ζr
F1

(s, A)
1

nr (−1)nr

det(ΦA)rnr−2

e−nrs.
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Investigating the cases when n has small prime divisors is an interesting problem. It
seems that the situation is much more complicated. We give some examples below.

Example. 2.2 When A = F1[µµµ2 × µµµ2], we have

ζ2
F1

(s, A) = (1 − e−s)−25 exp

(
10 − 36e−s + 9e−2s + 18e−3s

(1 − e−s)2

)
.

Proof. The result follows from

|Hom(A,M2(F1m))| =

{
(m + 5)2 m ≥ 3

(m + 2)2 m = 1, 2
.

Example. 2.3 When A = F13 , we have

ζ3
F1

(s, A) = (1 − e−s)−1(1 − e−3s)−
20
3 exp

(
3
e−3s(1 + 2e−3s)

(1 − e−3s)2

)
.

Proof. The result follows from

|Hom(A,M3(F1m))| =

{
1 3 ̸ | m

27 + 22 3 | m
.

Example. 2.4 When A = F12 , we have

ζ2
F1

(s, A) = (1 − e−s)−5 exp

(
−4 + 3e−s + 3e−2s

2(e−s − 1)

)
.

Proof. The result follows from

|Hom(A,M2(F1m))| =

{
m + 5 m ≥ 3

m + 2 m = 1, 2
.

Example. 2.5 For A = F12 , we have

ζr
F1

(s, A) = exp

 ∞∑
l=1

r!

(2l − 1)!

[r/2]∑
k=0

e−2ls

2k(r − 2k)!

(
(2l)k

2l − 1
es +

(2l + 1)k

(2l)2
22(l−k)

)
15



Proof. The result follows from

|Hom(A,Mr(F1m))| =



[r/2]∑
k=0

r!(m + 1)k

2k(r − 2k)!
2 ̸ | m

[r/2]∑
k=0

r!(m + 1)k

2k(r − 2k)!
2m−2k 2 | m

.

In what follows we give some examples for the case when A is infinite. We define the
Euler polynomials gr(T ) ∈ Z[T ] (r = 1, 2, 3, ...) by

g1(T ) = T and gr+1(T ) =
r∑

k=1

(
r

k − 1

)
(T − 1)r−kgk(T ). (2.9)

For example,

g1(T ) = T,

g2(T ) = T,

g3(T ) = T 2 + T,

g4(T ) = T 3 + 4T 2 + T.

In [8, Lemma 2.2], we proved the following lemma.

Lemma 2.1 For r = 1, 2, 3, ..., we have

∞∑
ν=1

νr−1T ν =
gr(T )

(1 − T )r
,

where gr(T ) ∈ Z[T ] is defined by (2.9).

By using this lemma, we prove the following.

Example. 2.6 When A = F1[T
±], the explicit form of ζr

F1
(s, A) is given by

ζr
F1

(s, A) = exp

(
gr(e

−s)r!

(1 − e−s)r

)
.

It satisfies the functional equation

ζr
F1

(−s, A) = ζr
F1

(s, A)(−1)r

.
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Proof. Since an element in Hom(A,Mr(F1m)) is determined by the image of T , which must
be invertible. Thus

|Hom(A,Mr(F1m))| = |GLr(F1m)| = mrr!.

Then we compute

ζr
F1

(s, A) = exp

(
∞∑

m=1

mrr!

m
e−ms

)

= exp

(
∞∑

m=1

mr−1e−ms

)r!

= exp

(
gr(e

−s)r!

(1 − e−s)r

)
.

Example. 2.7 When A = F1[T ], the explicit form of ζr
F1

(s, A) is given by

ζr
F1

(s, A) == (1 − e−s)−1 exp

(
r∑

k=1

(
r

k

)
rk gk(e

−s)

(1 − e−s)k

)
.

Proof. The element in Hom(A,Mr(F1m)) is determined by the image of T , which must belong
to Mr(F1m) = End(Fr

1m). Thus

|Hom(A,Mr(F1m))| = |End(Fr
1m)| = (rm + 1)r.

Then

ζr
F1

(s, A) = exp

(
∞∑

m=1

(rm + 1)r

m
e−ms

)

= exp

(
∞∑

m=1

1

m

r∑
k=0

(
r

k

)
(rm)ke−ms

)

= exp

(
∞∑

m=1

(
1

m
+

r∑
k=1

(
r

k

)
rkmk−1

)
e−ms

)

= (1 − e−s)−1 exp

(
r∑

k=1

(
r

k

)
rk

∞∑
m=1

mk−1e−ms

)

= (1 − e−s)−1 exp

(
r∑

k=1

(
r

k

)
rk gk(e

−s)

(1 − e−s)k

)
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