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1 Introduction
Let 𝐾 be a number field and 𝒪𝐾 be its ring of integers. We regard an 𝑚-tuple
of ideals (a1, a2, . . . , a𝑚) of 𝒪𝐾 as a lattice point in 𝐾𝑚. We say that a lattice
point (a1, a2, . . . , a𝑚) is relatively 𝑟-prime for a positive integer 𝑟, if there exists
no prime ideal p such that a1, a2, . . . , a𝑚 ⊂ p𝑟.

Let 𝑉 𝑟
𝑚(𝑥, 𝐾) denote the number of relatively 𝑟-prime lattice points

(a1, a2, . . . , a𝑚) such that Nai ≤ 𝑥 (𝑖 = 1, 2, 3, ..., 𝑚). The behavior of 𝑉 𝑟
𝑚(𝑥, 𝐾)

has long been studied. In 1900, Lehmer [Le00] found that 𝑉 1
𝑚(𝑥,Q) ∼ 𝑥𝑚/𝜁(𝑚)
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as 𝑥 → ∞. Later in seventies, Benkoski [Be76] generalized it to 𝑉 𝑟
𝑚(𝑥,Q) ∼

𝑥𝑚/𝜁(𝑟𝑚) for any integer 𝑟 ≥ 1. The milestone was the work of B. D. Sittinger
in 2010 ([St10]). Roughly expressing, he proved in [St10] that

𝑉 𝑟
𝑚(𝑥, 𝐾) = 𝑐𝑚

𝜁𝐾(𝑟𝑚)𝑥𝑚 + 𝑜(𝑥𝑚) (𝑥 → ∞) (1)

for any fixed number field 𝐾 with 𝜁𝐾 being the Dedekind zeta function of 𝐾

and with 𝑐 being a positive constant depending only on 𝐾. He actually obtained
the error term in (1) in a more concrete form, which we will describe precisely
in Theorem 3.1. In his remarkable work, Sittinger dealt with ideals in algebraic
integer rings rather than algebraic integers themselves. This idea led us to a new
stage for general number fields.

In the previous papers, the first author obtained estimates of the error term

𝐸𝑟
𝑚(𝑥, 𝐾) = 𝑉 𝑟

𝑚(𝑥, 𝐾) − 𝑐𝑚

𝜁𝐾(𝑟𝑚)𝑥𝑚

as follows:

Theorem ([Ta17][Ta17b]). Let 𝑛 = [𝐾 : Q]. It holds that

𝐸𝑟
𝑚(𝑥, 𝐾) =

⎧⎪⎪⎨⎪⎪⎩
𝑂
(︀
𝑥𝑚−𝛼(𝑛)(log 𝑥)𝛽(𝑛))︀ if 𝑟𝑚 ≥ 3,

𝑂
(︀
𝑥2−𝛼(𝑛)(log 𝑥)2𝛽(𝑛)+1)︀ if (𝑟, 𝑚) = (1, 2), (𝑥 → ∞)

𝑂
(︁

𝑥1− 𝛼(𝑛)
2 (log 𝑥)2𝛽(𝑛)

)︁
if (𝑟, 𝑚) = (2, 1)

(2)
with

𝛼(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
2
𝑛 − 8

𝑛(5𝑛+2) (3 ≤ 𝑛 ≤ 6),
2
𝑛 − 3

2𝑛2 (7 ≤ 𝑛 ≤ 9),
3

𝑛+6 − 𝜀 (𝑛 ≥ 10)

and 𝛽(𝑛) =

⎧⎪⎪⎨⎪⎪⎩
10

5𝑛+2 (3 ≤ 𝑛 ≤ 6),
2
𝑛 (7 ≤ 𝑛 ≤ 9),
0 (𝑛 ≥ 10).

Moreover if we assume the Lindelöf hypothesis for 𝜁𝐾(𝑠), it holds for all 𝜀 > 0
that

𝐸𝑟
𝑚(𝑥, 𝐾) =

⎧⎨⎩ 𝑂
(︁

𝑥
3
4 +𝜀
)︁

if (𝑟, 𝑚) = (2, 1),

𝑂
(︁

𝑥𝑚− 1
2 +𝜀
)︁

otherwise,

as 𝑥 → ∞.

The estimates (2) improves the original bound of Sittinger [St10] for any number
field 𝐾 with [𝐾 : Q] ≥ 3.

Our goal is to study another aspect of 𝐸𝑟
𝑚(𝑥, 𝐾). Our chief concern is the

behavior of 𝐸𝑟
𝑚(𝑥, 𝐾) with the field 𝐾 being varied. We express the bounds in
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terms of the absolute value 𝐷 = 𝐷𝐾 of the discriminant of 𝐾 as well as 𝑥, and
our results are described as both 𝑥 and 𝐷 go to infinity.

Our proof heavily uses estimates of Dedekind zeta functions. In particular, the
Lindelöf hypotheses in the discriminant aspect gives the conjectural best estimate.
We also show unconditional results by using known bounds of 𝐿-functions.

After the preliminaries in Sections 2 and 3, we first present a conditional
result under the Lindelöf hypothesis for 𝜁𝐾(𝑠) in the aspect of both ℑ(𝑠) and 𝐷

in Section 4. Theorem 4.1 below asserts under the Lindelöf hypothesis that

𝑉 𝑟
𝑚(𝑥, 𝐾) = 𝑐𝑚

𝜁𝐾(𝑟𝑚)𝑥𝑚

+

⎧⎨⎩ 𝑂
(︁

𝑥
1
𝑟 ( 3

2 +𝜀)𝐷2𝜀− 𝑚−1
2

)︁
𝑖𝑓 𝑟𝑚 = 2, or 𝑟 = 3, 𝑚 = 1 and 𝜀 < 1

10 ,

𝑂
(︁

𝑥𝑚− 1
2 +𝜀𝐷𝜀− 𝑚−1

2

)︁
otherwise,

as 𝑥, 𝐷 → ∞, where the field 𝐾 runs through all number fields with 𝑥1−2𝜀 >

𝐷1+2𝜀.
Next we show unconditional results by restricting the degree of 𝐾 to be less

than or equal to 6. We prove in Theorem 4.2 that

𝐸𝑟
𝑚(𝑥, 𝐾) =

⎧⎨⎩𝑂
(︁

𝑥
1
𝑟 ( 23929

15960 + 89𝑛
1140 +𝜀)𝐷

31
95 − 𝑚−1

2

)︁
if 𝑟𝑚 = 2,

𝑂
(︁

𝑥𝑚+ 89𝑛
1140 − 7991

15960 +𝜀𝐷
31

190 − 𝑚−1
2

)︁
otherwise,

as 𝑥, 𝐷 → ∞, where 𝐾 runs through abelian extensions with 𝑥
1

753 +𝜀 > 𝐷 and
[𝐾 : Q] ≤ 6.

Removing the assumption that 𝐾 is abelian is an open question. Some
progress toward this problem will be studied in the forthcoming paper [Ta17c].

2 The Lindelöf hypothesis in the discriminant
aspect

In this section, we introduce the Lindelöf hypothesis in the discriminant aspect
which is implied by that in the aspect of the analytic conductor.

For an 𝐿-function 𝐿(𝑠, 𝜒) having an Euler product of degree 𝑑, the analytic
conductor q(𝑠, 𝜒) is defined as

q(𝑠, 𝜒) = 𝑞(𝜒)
𝑑∏︁

𝑗=1
(|𝑠 + 𝜅𝑗 | + 3), (3)
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where 𝑞(𝜒) is the conductor of 𝜒 and 𝜅𝑗 is the local parameters of 𝐿(𝑠, 𝜒) at
infinity. For the details for the definition of the analytic conductor, one can see
Iwaniec and Kowalski’s book [IK04].

The Dedekind zeta function 𝜁𝐾 over 𝐾 is defined as

𝜁𝐾(𝑠) =
∑︁
a

1
Na𝑠

with the sum taken over all nonzero ideals of 𝒪𝐾 . It is known that 𝜁𝐾 has an
Euler product of degree 𝑛 = [𝐾 : Q].

The Lindelöf hypothesis is extended for many L-functions. In Iwaniec and
Kowalski’s book [IK04], this hypothesis is written as

The Lindelöf Hypothesis in the analytic conductor aspect.
Let 𝐿(𝑠, 𝜒) be an 𝐿-function, then for every 𝜀 > 0,

𝐿

(︂
1
2 + 𝑖𝑡, 𝜒

)︂
= 𝑂 (q(𝑠, 𝜒)𝜀) (q → ∞),

where q(𝑠, 𝜒) is the analytic conductor and the constant implied in 𝑂 depends on
𝜀 alone.

Put 𝐷 = |𝑑𝐾 |, where 𝑑𝐾 is the discriminant of 𝐾. The analytic conductor of
𝜁𝐾(𝑠) = 𝐿(𝑠, 𝜒𝐾) is given by

q(𝑠, 𝜒𝐾) = 𝐷(|𝑡| + 3)𝑟1+𝑟2(|𝑡 + 1| + 3)𝑟2 , (4)

where 𝑟1 is the number of real embeddings of 𝐾 and 𝑟2 is the number of pairs of
complex embeddings. It is well known that 𝑛 = 𝑟1 + 2𝑟2. The Lindelöf hypothesis
in the discriminant aspect is expressed as follows.

The Lindelöf Hypothesis in the discriminant aspect.
Let 𝐷 be the absolute value of the discriminant of 𝐾, and assume |𝑡| > 1.

Then for every 𝜀 > 0,

𝜁𝐾

(︂
1
2 + 𝑖𝑡

)︂
= 𝑂 ((𝐷|𝑡|𝑛)𝜀) (𝐷|𝑡|𝑛 → ∞), (5)

where the constant implied in 𝑂 depends on 𝜀 alone.

The conjecture (5) implies behaviors of 𝜁𝐾

(︀ 1
2 + 𝑖𝑡

)︀
with one of 𝑡 and 𝐷 being

fixed and with the other variable growing.
Partial results towards the conjecture (5) are known in the sense that

some nontrivial exponents are obtained with both 𝑡 and 𝐷 growing under a
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certain condition. Namely, Huxley and Watt showed that for primitive Dirichlet
characters 𝜒 modulo 𝑝

𝐿

(︂
1
2 + 𝑖𝑡, 𝜒

)︂
= 𝑂

(︁
|𝑡|

89
570 +𝜀𝑝

31
190

)︁
(|𝑡|, 𝑝 → ∞) (6)

with 𝑝 < |𝑡| 2
753 for all 𝜀 > 0 [HW00].

When 𝐾 is an abelian extension field, we have a factorization of the Dedekind
zeta function as 𝜁𝐾(𝑠) = 𝜁Q(𝑠)

∏︀
𝜒 𝐿(𝑠, 𝜒). Here 𝜒 runs through Dirichlet char-

actors so that the product of their conductors is equal to 𝐷. Bourgain showed
that

𝜁Q

(︂
1
2 + 𝑖𝑡

)︂
= 𝑂

(︁
|𝑡|

13
84 +𝜀

)︁
, (7)

as |𝑡| → ∞ for all 𝜀 > 0 [Bo17]. Since the Dedekind zeta function 𝜁𝐾 has an
Euler product of degree 𝑛 = [𝐾 : Q], it holds from (6) and (7) that for any 𝜀 > 0

𝜁𝐾

(︂
1
2 + 𝑖𝑡

)︂
= 𝑂

(︁
|𝑡|

89𝑛
570 − 11

7980 +𝜀𝐷
31

190

)︁
(|𝑡|, 𝐷 → ∞), (8)

as 𝐾 runs through all abelian extension fields with 𝐷 < |𝑡| 2
753 .

3 Auxiliary Theorems
In this section we prepare auxiliary theorems which are necessary for showing
the main theorem. Let 𝐼𝐾(𝑥) be the number of ideals of 𝒪𝐾 with their ideal
norm less than or equal to 𝑥.

Put 𝑛 = [𝐾 : Q]. In [St10], Sittinger used the estimate 𝐼𝐾(𝑥) = 𝑐𝑥 +
𝑂
(︁

𝑥1− 1
𝑛

)︁
(𝑥 → ∞) to show the following theorem:

Theorem 3.1 (Sittinger [St10]). It holds that

𝑉 𝑟
𝑚(𝑥, 𝐾) = 𝑐𝑚

𝜁𝐾(𝑟𝑚)𝑥𝑚 +

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑂(𝑥𝑚− 1
𝑛 ) if 𝑚 ≥ 3, or 𝑚 = 2 and 𝑟 ≥ 2,

𝑂(𝑥2− 1
𝑛 log 𝑥) if 𝑚 = 2 and 𝑟 = 1,

𝑂(𝑥1− 1
𝑛 log 𝑥) if 𝑚 = 1 and 𝑛(𝑟−2)

𝑟−1 = 1,

𝑂(𝑥1− 1
𝑛 ) if 𝑚 = 1 and 𝑛(𝑟−2)

𝑟−1 > 1,

𝑂(𝑥 1
𝑟 (2− 1

𝑛 )) if 𝑚 = 1 and 𝑛(𝑟−2)
𝑟−1 < 1

as 𝑥 → ∞.

In the previous papers, the first author also used better estimates of 𝐼𝐾(𝑥) and
improved estimates of 𝐸𝑟

𝑚(𝑥, 𝐾) as 𝑥 → ∞.
Here we are estimating 𝐼𝐾(𝑥) as 𝑥, 𝐷 → ∞ under the hypothesis (5).
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Theorem 3.2. Assume the hypothesis (5). Then for every 0 < 𝜀 < 1
2 we have

𝐼𝐾(𝑥) = 𝑐𝑥 + 𝑂
(︁

𝑥
1
2 +𝜀𝐷𝜀

)︁
(𝑥, 𝐷 → ∞),

where 𝐾 runs through all number fields with 𝑥1−2𝜀 > 𝐷1+2𝜀. Here the constant
𝑐 is defined by

𝑐 = 2𝑟1(2𝜋)𝑟2ℎ𝑅

𝑤
√

𝐷
(9)

with ℎ, 𝑅, and 𝑤 being the class number, the regulator, and the number of roots
of unity in the integer ring of 𝐾, respectively.

Proof. It suffices to show that 𝐼𝐾(𝑥) = 𝑐𝑥 + 𝑂
(︁

𝑥
1
2 +𝜀𝐷𝜀

)︁
for any half-integer

𝑥 = 𝑛+ 1
2 with 𝑛 a positive integer, since it holds for any real number 𝑦 ∈ [𝑛, 𝑛+1)

that 𝐼𝐾(𝑥) = 𝐼𝐾(𝑦).
We consider the integral

1
2𝜋𝑖

∫︁
𝐶

𝜁𝐾(𝑠)𝑥𝑠

𝑠
𝑑𝑠,

where 𝐶 is the contour 𝐶1 ∪ 𝐶2 ∪ 𝐶3 ∪ 𝐶4 in the following figure.

-

6

-

6

�

O ℜ(𝑠)

ℑ(𝑠)

r ?

𝑖𝑇

−𝑖𝑇

1
2 1 + 𝜀

𝐶2

𝐶1

𝐶4

𝐶3

In a way similar to the well-known proof of Perron’s formula, we estimate

1
2𝜋𝑖

∫︁
𝐶1

𝜁𝐾(𝑠)𝑥𝑠

𝑠
𝑑𝑠 = 𝐼𝐾(𝑥) + 𝑂

(︂
𝑥1+𝜀

𝑇

)︂
.
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We can select the large 𝑇 , so that the 𝑂-term in the right hand side is sufficiently
small. For estimating the left hand side by using the hypotheses (5), we divide it
into the integrals over 𝐶2, 𝐶3 and 𝐶4. First we calculate the integral over 𝐶3 as⃒⃒⃒⃒

⃒⃒ 1
2𝜋𝑖

∫︁
𝐶3

𝜁𝐾(𝑠)𝑥𝑠

𝑠
𝑑𝑠

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒ 1
2𝜋𝑖

−𝑇∫︁
𝑇

𝜁𝐾

(︂
1
2 + 𝑖𝑡

)︂
𝑥

1
2 +𝑖𝑡

1
2 + 𝑖𝑡

𝑖 𝑑𝑡

⃒⃒⃒⃒
⃒⃒

≤ 1
2𝜋

𝑇∫︁
−𝑇

⃒⃒⃒⃒
𝜁𝐾

(︂
1
2 + 𝑖𝑡

)︂⃒⃒⃒⃒
𝑥

1
2⃒⃒ 1

2 + 𝑖𝑡
⃒⃒ 𝑑𝑡.

By the hypothesis (5) we conclude that⃒⃒⃒⃒
⃒⃒ 1
2𝜋𝑖

∫︁
𝐶3

𝜁𝐾(𝑠)𝑥𝑠

𝑠
𝑑𝑠

⃒⃒⃒⃒
⃒⃒ = 𝑂

⎛⎝ 𝑇∫︁
−𝑇

(𝑇 𝑛𝐷)𝜀 𝑥
1
2⃒⃒ 1

2 + 𝑖𝑡
⃒⃒ 𝑑𝑡

⎞⎠
= 𝑂

⎛⎝ 𝑇∫︁
1

(𝑇 𝑛𝐷)𝜀 𝑥
1
2

𝑡
𝑑𝑡 +

1∫︁
−1

(𝑇 𝑛𝐷)𝜀 𝑥
1
2

1
2 + 𝑖𝑡

𝑑𝑡

⎞⎠
= 𝑂

(︁
𝑥

1
2 (𝑇 𝑛𝐷)𝜀

)︁
.

Next we consider the integrals over 𝐶2 and 𝐶4. It holds by (5) that their
sum is estimated as⃒⃒⃒⃒
⃒⃒ 1
2𝜋𝑖

∫︁
𝐶2∪𝐶4

𝜁𝐾(𝑠)𝑥𝑠

𝑠
𝑑𝑠

⃒⃒⃒⃒
⃒⃒ ≤ 1

2𝜋

1+𝜀∫︁
1
2

|𝜁𝐾 (𝜎 + 𝑖𝑇 )| 𝑥𝜎

𝑇
𝑑𝜎 + 1

2𝜋

1+𝜀∫︁
1
2

|𝜁𝐾 (𝜎 − 𝑖𝑇 )| 𝑥𝜎

𝑇
𝑑𝜎

= 𝑂

⎛⎜⎝ 1+𝜀∫︁
1
2

(𝑇 𝑛𝐷)𝜀 𝑥𝜎

𝑇
𝑑𝜎

⎞⎟⎠
= 𝑂

(︂
𝑥1+𝜀𝐷𝜀

𝑇 1−𝑛𝜀

)︂
.

By Cauchy’s residue theorem we get

1
2𝜋𝑖

∫︁
𝐶

𝜁𝐾(𝑠)𝑥𝑠

𝑠
𝑑𝑠 = 𝜌𝑥,

where 𝜌 is the residue of 𝜁𝐾(𝑠) at 𝑠 = 1. But it is known that 𝜌 = 𝑐 ([La94]).
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By gathering all results above, we reach

𝐼𝐾(𝑥) = 𝑐𝑥 + 𝑂

(︂
𝑥1+𝜀

𝑇

)︂
+ 𝑂

(︁
𝑥

1
2 𝑇 𝑛𝜀𝐷𝜀

)︁
+ 𝑂

(︂
𝑥1+𝜀𝐷𝜀

𝑇 1−𝑛𝜀

)︂
.

When we select 𝑇 = 𝑥
1
2 +𝜀, this becomes

𝐼𝐾(𝑥) = 𝑐𝑥 + 𝑂
(︁

𝑥
1
2 +𝜀𝐷𝜀

)︁
.

This proves the theorem.

Next we obtain unconditional estimates of 𝐼𝐾(𝑥) by using (8). The following
theorem is shown in a way similar to the proof of Theorem 3.2 with 𝑇 𝑛𝜀𝐷𝜀

replaced by 𝑇
89𝑛
570 − 11

7980 +𝜀𝐷
31

190 .

Theorem 3.3. Let 𝑆 be a subset of {𝐾 : abelian extension field | [𝐾 : Q] ≤ 6}
and 𝑛 = max{[𝐾 : Q] : 𝐾 ∈ 𝑆}. Then for every 𝜀 > 0, we have

𝐼𝐾(𝑥) = 𝑐𝑥 + 𝑂
(︁

𝑥
89𝑛
1140 + 7969

15960 +𝜀𝐷
31

190

)︁
(𝑥, 𝐷 → ∞).

where 𝐾 runs through elements in 𝑆 satisfying that 𝑥
1

753 +𝜀 > 𝐷.

4 Main results
We estimated 𝐼𝐾(𝑥) in the last section. Theorems 3.2 and 3.3 will play a crucial
role in our computing the number of relatively 𝑟-prime lattice points by the
relation

𝑉 𝑟
𝑚(𝑥, 𝐾) =

∑︁
Na≤𝑥

1
𝑟

𝜇(a)𝐼𝐾

(︁ 𝑥

Na𝑟

)︁𝑚

, (10)

where 𝜇(a) is the Möbius function defined as

𝜇(a) def=

⎧⎨⎩
0 𝑖𝑓 a ⊂ p2 for some prime ideal p,

1 𝑖𝑓 a = 1,

(−1)𝑠 𝑖𝑓 a = p1 · · · p𝑠, where p1, . . . , p𝑠 are distinct prime ideals.

Theorem 4.1. If we assume the hypothesis (5), then it holds for all 0 < 𝜀 < 1
2

that

𝑉 𝑟
𝑚(𝑥, 𝐾) = 𝑐𝑚

𝜁𝐾(𝑟𝑚)𝑥𝑚

+

⎧⎨⎩ 𝑂
(︁

𝑥
1
𝑟 ( 3

2 +𝜀)𝐷2𝜀− 𝑚−1
2

)︁
𝑖𝑓 𝑟𝑚 = 2, or 𝑟 = 3, 𝑚 = 1 and 𝜀 < 1

10 ,

𝑂
(︁

𝑥𝑚− 1
2 +𝜀𝐷𝜀− 𝑚−1

2

)︁
otherwise,
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as 𝑥, 𝐷 → ∞, where 𝐾 runs through all number fields with 𝑥1−2𝜀 > 𝐷1+2𝜀.

Proof. We use the identity (10) to compute as follows. Theorem 3.2 and the
binomial theorem lead to

𝑉 𝑟
𝑚(𝑥, 𝐾) =

∑︁
Na≤𝑥

1
𝑟

𝜇(a)
(︂

𝑐𝑥

Na𝑟
+ 𝑂

(︂(︁ 𝑥

Na𝑟

)︁ 1
2 +𝜀

𝐷𝜀

)︂)︂𝑚

= (𝑐𝑥)𝑚
∑︁

Na≤𝑥
1
𝑟

𝜇(a)
Na𝑟𝑚

+ 𝑂

⎛⎜⎝ ∑︁
Na≤𝑥

1
𝑟

(︁ 𝑐𝑥

Na𝑟

)︁𝑚−1 (︁ 𝑥

Na𝑟

)︁ 1
2 +𝜀

𝐷𝜀

⎞⎟⎠ .

From the definition of 𝑐 (9)

𝑉 𝑟
𝑚(𝑥, 𝐾)= (𝑐𝑥)𝑚

∑︁
Na≤𝑥

1
𝑟

𝜇(a)
Na𝑟𝑚

+ 𝑂

⎛⎜⎝ ∑︁
Na≤𝑥

1
𝑟

(︃
𝐷− 1

2 𝑥

Na𝑟

)︃𝑚−1 (︁ 𝑥

Na𝑟

)︁ 1
2 +𝜀

𝐷𝜀

⎞⎟⎠
= (𝑐𝑥)𝑚

∑︁
Na≤𝑥

1
𝑟

𝜇(a)
Na𝑟𝑚

+ 𝑂

⎛⎜⎝ ∑︁
Na≤𝑥

1
𝑟

(︁ 𝑥

Na𝑟

)︁𝑚− 1
2 +𝜀

𝐷𝜀− 𝑚−1
2

⎞⎟⎠ .

By using the fact that ∑︁
a

𝜇(a)
Na𝑟𝑚

= 1
𝜁𝐾(𝑟𝑚) ,

we get

𝑉 𝑟
𝑚(𝑥, 𝐾) = 𝑐𝑚

𝜁𝐾(𝑟𝑚)−(𝑐𝑥)𝑚
∑︁

Na>𝑥
1
𝑟

𝜇(a)
Na𝑟𝑚

+ 𝑂

⎛⎜⎝ ∑︁
Na≤𝑥

1
𝑟

(︁ 𝑥

Na𝑟

)︁𝑚− 1
2 +𝜀

𝐷𝜀− 𝑚−1
2

⎞⎟⎠ .

The first term (𝑐𝑥)𝑚/𝜁𝐾(𝑟𝑚) agrees to the principal term of 𝑉 𝑟
𝑚(𝑥, 𝐾) ([St10]).

Thus 𝐸𝑟
𝑚(𝑥, 𝐾) is expressed as

𝐸𝑟
𝑚(𝑥, 𝐾) = −(𝑐𝑥)𝑚

∑︁
Na>𝑥

1
𝑟

𝜇(a)
Na𝑟𝑚

+ 𝑂

⎛⎜⎝ ∑︁
Na≤𝑥

1
𝑟

(︁ 𝑥

Na𝑟

)︁𝑚− 1
2 +𝜀

𝐷𝜀− 𝑚−1
2

⎞⎟⎠ .

Now we estimate the behavior of the first sum in the right hand side as 𝑥, 𝐷 → ∞.
From Theorem 3.2, it follows that 𝐼𝐾(𝑥) − 𝐼𝐾(𝑥 − 1) = 𝑂(𝑥 1

2 +𝜀𝐷𝜀), and so we
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have

(𝑐𝑥)𝑚
∑︁

Na>𝑥
1
𝑟

𝜇(a)
Na𝑟𝑚

= 𝑂

⎛⎜⎝(︁𝐷− 1
2 𝑥
)︁𝑚

∞∫︁
𝑥

1
𝑟

𝑦
1
2 +𝜀𝐷𝜀

𝑦𝑟𝑚
𝑑𝑦

⎞⎟⎠
= 𝑂

(︁
𝑥

1
𝑟 ( 3

2 +𝜀)𝐷𝜀− 𝑚
2

)︁
.

Next we deal with the second sum. Again using 𝐼𝐾(𝑥)−𝐼𝐾(𝑥−1) = 𝑂(𝑥 1
2 +𝜀𝐷𝜀),

we have∑︁
Na≤𝑥

1
𝑟

(︁ 𝑥

Na𝑟

)︁𝑚− 1
2 +𝜀

𝐷𝜀− 𝑚−1
2

= 𝑂

⎛⎜⎝𝑥𝑚− 1
2 +𝜀𝐷𝜀− 𝑚−1

2

⎛⎜⎝1 +
𝑥

1
𝑟∫︁

1

𝑦
1
2 +𝜀𝐷𝜀

𝑦𝑟(𝑚− 1
2 +𝜀)

𝑑𝑦

⎞⎟⎠
⎞⎟⎠

=

⎧⎨⎩ 𝑂
(︁

𝑥
3
2 +𝜀𝐷𝜀− 1

2 + 𝑥
3
2 +𝜀 log 𝑥𝐷2𝜀− 1

2

)︁
𝑖𝑓 𝑟 = 1, 𝑚 = 2,

𝑂
(︁

𝑥𝑚− 1
2 +𝜀𝐷𝜀− 𝑚−1

2 + 𝑥
1
𝑟 ( 3

2 +𝜀)𝐷2𝜀− 𝑚−1
2

)︁
otherwise.

Comparing 𝑥𝑚− 1
2 +𝜀𝐷𝜀− 𝑚−1

2 and 𝑥
1
𝑟 ( 3

2 +𝜀)𝐷2𝜀− 𝑚−1
2 to find out which is greater,

we obtain∑︁
Na≤𝑥

1
𝑟

(︁ 𝑥

Na𝑟

)︁𝑚− 1
2 +𝜀

𝐷𝜀− 𝑚−1
2

=

⎧⎨⎩ 𝑂
(︁

𝑥
1
𝑟 ( 3

2 +𝜀)𝐷2𝜀− 𝑚−1
2

)︁
𝑖𝑓 𝑟𝑚 = 2, or 𝑟 = 3, 𝑚 = 1 and 𝜀 < 1

10 ,

𝑂
(︁

𝑥𝑚− 1
2 +𝜀𝐷𝜀− 𝑚−1

2

)︁
otherwise.

Hence we get

𝑉 𝑟
𝑚(𝑥, 𝐾) = 𝑐𝑚

𝜁𝐾(𝑟𝑚)𝑥𝑚

+

⎧⎨⎩ 𝑂
(︁

𝑥
1
𝑟 ( 3

2 +𝜀)𝐷2𝜀− 𝑚−1
2

)︁
𝑖𝑓 𝑟𝑚 = 2, or 𝑟 = 3, 𝑚 = 1 and 𝜀 < 1

10 ,

𝑂
(︁

𝑥𝑚− 1
2 +𝜀𝐷𝜀− 𝑚−1

2

)︁
otherwise.

This proves the theorem.

Theorem 3.3 gives our conclusion on the estimate of 𝐸𝑟
𝑚(𝑥, 𝐾), whose proof is

similar to that of Theorem 4.1.
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Theorem 4.2. Let 𝑆 be a subset of {𝐾 : abelian extension field | [𝐾 : Q] ≤ 6}
and 𝑛 = max{[𝐾 : Q] : 𝐾 ∈ 𝑆}. Then for every 𝜀 > 0,

𝑉 𝑟
𝑚(𝑥, 𝐾) = 𝑐𝑚

𝜁𝐾(𝑟𝑚)𝑥𝑚 +

⎧⎨⎩ 𝑂
(︁

𝑥
1
𝑟 ( 23929

15960 + 89𝑛
1140 +𝜀)𝐷

31
95 − 𝑚−1

2

)︁
if 𝑟𝑚 = 2,

𝑂
(︁

𝑥𝑚+ 89𝑛
1140 − 7991

15960 +𝜀𝐷
31

190 − 𝑚−1
2

)︁
otherwise,

as 𝑥, 𝐷 → ∞, where 𝐾 runs through elements in 𝑆 satisfying that 𝑥
1

753 +𝜀 > 𝐷.
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