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Abstract. We investigate the behavior of the Euler products of the Riemann zeta function
and Dirichlet L-functions on the critical line. A refined version of the Riemann hypothe-
sis, which is named “the Deep Riemann Hypothesis”, is examined. We also study various
analogs for global function fields. We give an interpretation for the nontrivial zeros from
the viewpoint of statistical mechanics.
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1. Introduction

Let χ be a primitive Dirichlet character with conductor N . The Dirichlet
L-function is expressed by an Euler product

L(s, χ)=
∏

p

(1−χ(p)p−s)−1, (1)

where p runs through all primes. The product (1) is absolutely convergent for
Re(s)> 1. It is known that L(s, χ) has a meromorphic continuation to all s ∈ C,
which is entire if χ �=1, and has a simple pole at s =1 if χ =1.

In this paper we study the values L(s, χ) beyond the boundary Re(s)= 1 of
the absolute convergence region Re(s) > 1 from the viewpoint of its relation to
the values of the Euler product. Few results are known in this context. The clas-
sical results concerning the fact that the Euler product (1) converges to L(1 +
i t, χ)(t ∈ R, t �= 0) can be found in textbooks for either χ = 1 [17, Chapter 3]
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or χ �= 1 [13]. The only work we could find beyond this is that of Goldfeld [5],
Kuo–Murty [10] and Conrad [3]. Goldfeld [5] and Kuo–Murty [10] dealt with the
L-functions of elliptic curves at s = 1, with their results supporting the Birch and
Swinnerton-Dyer conjecture. Conrad [3] treated more general Euler products for
Re(s)≥1/2.

The (generalized) Riemann Hypothesis (GRH) for L(s, χ) asserts that L(s, χ) �=
0 in Re(s)>1/2. When χ �=1, it is equivalent to the following conjecture [3].

CONJECTURE 1. If χ �=1, then for Re(s)>1/2 we have

L(s, χ)= lim
n→∞

∏

p≤n

(1−χ(p)p−s)−1,

where the product is taken over all primes p satisfying p ≤n.

Note that the order of primes which participate in the product is important,
because it is not absolutely convergent.

CONJECTURE 2 (Deep Riemann Hypothesis (DRH)). If χ �= 1 and L(s, χ) �= 0
with Re(s)= 1

2 , we have

lim
n→∞

∏

p≤n

(1−χ(p)p−s)−1 = L(s, χ)×
{√

2 (s = 1
2 and χ2 =1)

1 (otherwise)
,

where the product is taken over all primes p satisfying p ≤n.

We call Conjecture 2 the Deep Riemann Hypothesis, a deeper modification of
Conjecture 1, literally because we reach the boundary of the domain Re(s)> 1/2
given in Conjecture 1, and logically because Conjecture 2 implies Conjecture 1.
Indeed, if we denote

ψ(x, χ)=
∞∑

m=1

∑

p: pm≤x

χ(p) log p,

Conjecture 1 is equivalent to

ψ(x, χ)= O(
√

x(log x)2),

while Conjecture 2 is equivalent to

ψ(x, χ)=o(
√

x log x)

by Conrad [3, Theorem 6.2].
The prototype version of this Conjecture 2 was proposed in [3]. For a general-

ization of Conjecture 2 to the case including χ =1, see Akatsuka [1].
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It is an easy task to obtain numerical support of Conjecture 2, since the conver-
gence of the left hand side is fairly fast.

This kind of process, introducing a parameter to define a finite analogue and
then taking it to infinity, is often used in physics when it is difficult to analyze the
infinite system directly. One can investigate how to approach infinity by analyzing
the deviation from the result in the desirable limit. For example, in order to study
the asymptotic behavior in an infinite volume system, it is convenient to introduce
a system of some finite size �, and then estimate a correction by analyzing a dif-
ferential equation in terms of �, which is the so-called renormalization group equa-
tion.

The situation for the Riemann zeta and the Dirichlet L-functions seems quite
similar: the difficulty with these functions lies essentially involved in treating infin-
ity, so that convergency of the Euler product is nontrivial. In this paper we numer-
ically examine the finite-size corrections to the zeta and L-functions appearing in
the finite analog, based on the analogy between nontrivial zeros and eigenvalues
of a certain infinite dimensional matrix or critical phenomena observed around a
phase transition point.

2. Function Field Analogs

In this section, we prove an analog of Conjecture 2 for function fields of one vari-
able over a finite field. The theory of zeta and L-functions over such function fields
are seen, for example, in the textbook of Rosen [15].

Let Fq be the finite field of q elements. We fix a conductor f (T )∈ Fq [T ] and
introduce a “Dirichlet” character

χ : (Fq [T ]/( f ))× →C×,

which is extended to Fq [T ] by χ(h)=0 for h such that (h, f ) �= (1). We define the
“Dirichlet” L-function by the Euler product:

LFq (T )(s, χ)=
∏

h

(1−χ(h)N (h)−s)−1,

where h = h(T )∈ Fq [T ] runs through monic irreducible polynomials, and N (h)=
qdeg h . In the celebrated work of Kornblum [8], it is proved that the above Euler
product is absolutely convergent in Re(s)>1, and is a polynomial in q−s of degree
less than deg( f )−2 if χ �=1 [19].

We prove the following theorem.

THEOREM 1 (DRH over function fields). Let q, f and χ be as above. Put K =
Fq(T ) and assume χ �=1. Then the following (1) and (2) are true.
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(1) For Re(s)>1/2, we have

lim
n→∞

∏

deg h≤n

(1−χ(h)N (h)−s)−1 = L K (s, χ).

(2) For t ∈R with L K (
1
2 + i t, χ) �=0, it holds that

lim
n→∞

∏

deg h≤n

(
1−χ(h)N (h)− 1

2 −i t
)−1 = L K

(
1
2

+ i t, χ

)
×

{√
2 (χ2 =1, t ∈ π

log p Z)

1 (otherwise)
.

Proof of Theorem 1. We prove (2) first. We estimate the product

En =
∏

deg h≤n

(
1−χ(h)N (h)− 1

2 −i t
)−1

by dealing with its logarithm

log En =
∑

deg h≤n

∞∑

k=1

χ(h)k

k
q−k( 1

2 +i t)deg h .

We divide the sum into three parts as

log En = A(n)+ B(n)+C(n)

with

A(n)=
∞∑

k=1

∑

deg h≤n/k

χ(h)k

k
q−k( 1

2 +i t)deg h,

B(n)=
∑

n/2≤deg h≤n

χ(h)2

2
q−2( 1

2 +i t)deg h,

C(n)=
∞∑

k=3

∑

n/k<deg h≤n

χ(h)k

k
q−k( 1

2 +i t)deg h .

By the above mentioned Kornblum’s theorem, we put

L K (s, χ)=
r∏

j=1

(1−λ j q
−s)

with |λ j |=√
q or 1 [4,6,18]. Then by taking the logarithmic derivatives of

∏

h

(1−χ(h)N (h)−s)−1 =
r∏

j=1

(1−λ j q
−s) (Re(s)>1)
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and comparing the coefficients of q−sk , we have

∑

(deg h)|k
(deg h)χ(h)

k
deg h =−

r∑

j=1

λk
j (k ≥1).

By this identity, the first partial sum A(n) is calculated as

A(n)=
∑

k≤n

q−( 1
2 +i t)k

k

∑

(deg h)|k
(deg h)χ(h)

k
deg h

=−
r∑

j=1

n∑

k=1

1
k

(
λ j

q
1
2 +i t

)k

.

By the Deligne’s theorem we have

∣∣∣∣
λ j

q
1
2 +i t

∣∣∣∣≤1 and the assumption L K (
1
2 + i t, χ) �=0

tells that λ j

q
1
2 +i t

�=1. Then by the Taylor expansion for log(1− x), it holds that

lim
n→∞ A(n)=

r∑

j=1

log

(
1− λ j

q
1
2 +i t

)

= log L K

(
1
2

+ i t, χ

)
.

Next for estimating B(n), we use the generalized Mertens’ theorem [14] that

∑

deg h<n

1
N (h)

∼ log n (n →∞).

When χ2 =1 and t ∈ π
log q Z, we compute that

B(n)= 1
2

∑

n/2≤deg h≤n

q−(1+2i t)deg h

= 1
2

⎛

⎝
∑

1≤deg h≤n

q−(1+2i t)deg h −
∑

1≤deg h<n/2

q−(1+2i t)deg h

⎞

⎠

= 1
2

(
(log n +C + O(n−1))−

(
log

n

2
+C + O(n−1)

))

= 1
2

(
log 2+ O(n−1)

)
.

Hence

lim
n→∞ B(n)= log

√
2.

In all other cases it holds that B(n)→0 as n →∞.
Finally, C(n)→0 as n →∞ by a similar argument to Lemma 3.1 in [3].
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For proving (1), we use the decomposition into A(n) and B(n)+C(n), in place
of that into A(n), B(n) and C(n) above. In this case both B(n) and C(n) are con-
cerning absolutely convergent series like C(n) in the proof of (2). Thus B(n)+
C(n)→0 as n →∞.

Conjecture 2 and Theorem 1 are generalized to automorphic L-functions by
Lownes [12].

The following theorems are for the case of the trivial character.

THEOREM 2. Let X be a projective smooth curve over Fq . Then

lim
n→∞

∏

N (x)≤qn

(1− N (x)−1/2)−1 · exp

(
−

n∑

l=1

ql/2

l

)
=√

2
(√

q −1
) ∣∣∣∣ζ

(
X,

1
2

)∣∣∣∣ .

Notice that

n∑

l=1

ql/2

l
= log q

1−q−1

qn∫

1

dq(u)√
u log u

,

where

qn∫

1

f (u)dq(u)=
n∑

l=1

f (ql)(ql −ql−1)

is Jackson’s q-integral [7,9]. Thus, it is considered as a “modified q-logarithmic
integral.” The situation is extended to the case of the Riemann zeta function stud-
ied by Akatsuka [1], where a “modified logarithmic integral” appears.

Proof of Theorem 2. Let g be the genus of the curve X . By Deligne’s theorem
[4] there exist α j ∈C with |α j |=√

q for j =1,2,3, . . . , g such that

ζ(X, s)=
∏g

j=1(1−α j q−s)(1−α j q−s)

(1−q−s)(1−q1−s)
.

Note that α j �=√
q, because α j +α j ∈Z. Thus we have

ζ

(
X,

1
2

)
=

∏g
j=1(1−α j q−1/2)(1−α j q−1/2)

(1−q−1/2)(1−q1/2)
.
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On the other hand we compute

log

⎛

⎝
∏

N (x)≤qn

(1− N (x)−1/2)−1

⎞

⎠

= log
∏

deg(x)≤n

(
1−q− deg(x)

2

)−1

=
∑

deg(x)≤n

∞∑

k=1

q− k deg(x)
2

k

=
∑

k,n
k deg(x)≤n

q− k deg(x)
2

k
+ 1

2

∑

n
2<deg(x)≤n

q−deg(x)+
∞∑

k=3

1
k

∑

n
k<deg(x)≤n

q− k deg(x)
2 .

When n →∞, the second term tends to 1
2 log 2 by the generalized Mertens’ theo-

rem [14], and the third term goes to 0, because we have
∑

x∈|X | N (x)−α <∞ for
any α>1. The first term is calculated as follows.

∑

k,n
k deg(x)≤n

q− k deg(x)
2

k
=

n∑

l=1

1
l

⎛

⎝
∑

deg(x)|l
deg(x)

⎞

⎠q−l/2

=
n∑

l=1

|X (Fql )|
l

q−l/2

=
n∑

l=1

ql +1−∑g
j=1(α

l
j +αl

j )

l
q−l/2

=
n∑

l=1

ql/2

l
+

∞∑

l=1

1−∑g
j=1(α

l
j +αl

j )

l
q−l/2 +o(1)

=
n∑

l=1

ql/2

l
+ log

∏g
j=1(1−α j q−1/2)(1−α j q−1/2)

1−q−1/2
+o(1),

where we used the fact that |α j | = √
q (α j �= √

q) for convergence of the Taylor
expansion of the logarithms. Therefore it holds that

log

⎛

⎝
∏

N (x)≤qn

(1− N (x)−1/2)−1

⎞

⎠

=
n∑

l=1

ql/2

l
+ 1

2
log 2+ log

∏g
j=1(1−α j q−1/2)(1−α j q−1/2)

1−q−1/2
+o(1).
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Hence

∏

N (x)≤qn

(1− N (x)−1/2)−1 ∼ exp

(
n∑

l=1

ql/2

l

)√
2
(√

q −1
) ∣∣∣∣ζ

(
X,

1
2

)∣∣∣∣ .

Theorem 2 is the “deeper analogue” for smooth curves of the following Theo-
rem 3 for proper smooth schemes, which in its turn is a function field analogue of
Mertens’ theorem [14]. In the situation of Theorem 2, it holds that

∏

N (x)≤t

(1− N (x)−1)−1 ∼ (Ress=1ζ(X, s)) eγ log t

as t →∞.

THEOREM 3. Let X be a proper smooth scheme over Fp. Then we have
∏

N (x)≤t

(1− N (x)−dim(X))−1 ∼ (
Ress=dim(X)ζ(X, s)

)
eγ log t

as t →∞.

Proof of Theorem 3.

log

⎛

⎝
∏

N (x)≤qn

(1− N (x)−dim(X))−1

⎞

⎠

= log

⎛

⎝
∏

deg(x)≤n

(1−q−dim(X)deg(x))−1

⎞

⎠

=
∑

deg(x)≤n

∞∑

k=1

q−dim(X)k deg(x)

k

=
∑

k,n
k deg(x)≤n

q−dim(X)k deg(x)

k
+

∞∑

k=2

1
k

∑

n
k<deg(x)≤n

q−dim(X)k deg(x).

The second term goes to 0 as n →∞, because we have
∑

x∈|X | N (x)−α <∞ for any
α>dim(X). The first term is calculated as follows. By putting l =k deg(x), we com-
pute

∑

k deg(x)≤n

q−dim(X)k deg(x)

k
=

n∑

l=1

1
l

⎛

⎝
∑

deg(x)|l
deg(x)

⎞

⎠q−dim(X)l . (2)

By the results of Grothendieck [6] and Deligne [4], there exist αi , β j ∈ C with
|αi |, |β j |<qdim(X) such that
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∑

deg(x)|l
deg(x)=|X (Fql )|

=ql dim(X)+
∑

j

βl
j −

∑

i

αl
i .

Hence

(2)=
n∑

l=1

1
l

+
n∑

l=1

1
l

⎛

⎝
∑

j

(
β j

qdim(X)

)l

−
∑

i

(
αi

qdim(X)

)l
⎞

⎠

= log n +γ + log

∏
i (1−αi q−dim(X))

∏
j (1−β j q−dim(X))

+o(1),

as n →∞. Since

ζ(X, s)=
∏

i (1−αi q−s)

(1−qdim(X)−s)
∏

j (1−β j q−s)
,

we see that s =dim(X) is the largest pole of ζ(X, s), which is simple with

Ress=dim(X)ζ(X, s)= 1
log q

·
∏

i (1−αi q−dim(X))
∏

j (1−β j q−dim(X))
.

Taking all terms into account, we conclude that
∏

N (x)≤qn

(1− N (x)−dim(X))−1 ∼neγ (log q)Ress=dim(X)ζ(X, s)

= (log qn) · eγ ·Ress=dim(X)ζ(X, s).

We conjecture that Theorem 3 would hold for general schemes:

CONJECTURE 3. Let X be a proper smooth scheme over Z. Then
∏

N (x)≤t

(1− N (x)−dim(X))−1 ∼ (
Ress=dim(X)ζ(X, s)

)
eγ log t

as t →∞.

3. Numerical Calculations

In this section we show some numerical data supporting the Deep Riemann Hypo-
thesis (Conjecture 2). If this conjecture is true, the partial Euler product

Lx (s, χ)=
∏

p≤x

(1−χ(p)p−s)−1,

converges to L(s, χ) or
√

2L(s, χ) as x →∞ even on the critical line Re(s)=1/2.
We formally put Lx (s, χ)= L(s, χ) for x =∞.
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Table I. L := L
(

1
2 ,

(
d·
))
, E :=∏

p≤107

(
1−

(
d
p

)
1√
p

)−1

d
√

2L E (
√

2L)/E

−3 0.680049 0.688002 0.988440
−4 0.944258 0.945909 0.998254
5 0.327745 0.320619 1.022223
−7 1.621517 1.640320 0.988536
8 0.528479 0.539992 0.978680
−8 1.556230 1.521663 1.022716
−11 1.402301 1.342967 1.044181
12 0.705066 0.729170 0.966942
13 0.621678 0.618558 1.005044
−15 2.612093 2.791265 0.935809
17 1.020601 1.066235 0.957201
−19 1.137621 1.173052 0.969795
−20 2.375413 2.356696 1.007942
21 0.703235 0.724051 0.971250
−23 3.472406 3.320551 1.045732
24 1.003325 1.057376 0.948881
−24 2.223023 2.130498 1.043428
28 1.162994 1.199957 0.969196
29 0.658655 0.683281 0.963958

Figure 1. Real part (left) and imaginary part (right) of Lx (1/2+ i t, χ7a).

First we give Table I, which shows the accuracy of Conjecture 2 at s =1/2. We
find that the ratio of

√
2L( 1

2 , χ) and Lx (
1
2 , χ) is almost equal to 1 for x = 107,

when χ is quadratic.
In what follows we put χ7a and χ7b to be the character χ modulo 7 with χ2 �=1

and χ2 = 1, respectively. Namely, if we define the character χ modulo 7 by giv-
ing the value at the primitive root 3∈Z/7Z, we define χ7a(3)= exp(π

√−1/3) and
χ7b(3)=−1. We also denote by χ3 the nontrivial character modulo 3, which satis-
fies χ2

3 =1.
Denote by pn the n-th prime number. Figures 1, 2, 3, 4, 5 and 6 show the datum

for the values

Lx

(
1
2

+ i t, χ

)
, Lx

(
3
4

+ i t, χ

)
, Lx (1+ i t, χ)
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Figure 2. Real part (left) and imaginary part (right) of Lx (1/2+ i t, χ7b).

Figure 3. Real part (left) and imaginary part (right) of Lx (3/4+ i t, χ7a).

Figure 4. Real part (left) and imaginary part (right) of Lx (3/4+ i t, χ7b).

Figure 5. Real part (left) and imaginary part (right) of Lx (1+ i t, χ7a).

Figure 6. Real part (left) and imaginary part (right) of Lx (1+ i t, χ7b).
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Figure 7. δLx (s, χ) for s = 1/2 (red), s = 3/4 (green) and s = 1 (blue) with χ7a (left) and χ7b
(right) (color figure online).

Table II. Exponents of δLx (s, χ)∼ x−α for χ7a and χ7b

s α (χ7a) α (χ7b)

1/2 0.1167 0.1978
3/4 0.3814 0.3106
1 0.6389 0.6302

for x = p10 (green), x = p100 (blue), x = p1000 (yellow) and ∞ (red). Figures 1, 3
and 5 are for χ7a , and Figures 2, 4 and 6 for χ7b. As t → 0, we apparently see
that Lx (1/2+ i t, χ)→ L(1/2, χ) for χ2 �= 1, that Lx (1/2+ i t, χ)→ √

2L(1/2, χ)
for χ2 = 1, and that Lx (3/4+ i t, χ)→ L(3/4, χ), Lx (1+ i t, χ)→ L(1, χ) for both
cases χ2 =1 and χ2 �=1. This supports the DRH (Conjecture 2).

We introduce the following error function in order to estimate the speed of con-
vergence for Lx (s, χ):

δLx (s, χ)=

⎧
⎪⎨

⎪⎩

∣∣∣ Lx (s,χ)−
√

2L(s,χ)√
2L(s,χ)

∣∣∣ (s =1/2 and χ2 =1)
∣∣∣ Lx (s,χ)−L(s,χ)

L(s,χ)

∣∣∣ (otherwise)
.

Figure 7 shows the values of δLx (s, χ). When we approximate the error function
as δLx (s, χ)∼ x−α, the exponents are determined so that they fit the numerical
results (Table II). We see the speed of convergence becomes faster as s gets larger,
if s is real.

4. Finite Size Scaling

In this section, we show another special feature that Lx (s, χ) has. Since Lx (s, χ) is
a finite Euler product, it obviously has no zeros on the critical line. Nevertheless,
Lx (s, χ) gives a certain sequence of complex numbers, which seemingly grows up
to the nontrivial zeros of L(s, χ), as x →∞. In other words, the finite partial Euler
product Lx (s, χ) already “knows” the nontrivial zeros of L(s, χ).
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In Figures 8, 9 and 10, the blue curves show the values

ρx (t)= 1
π

Im
d
dt

log Lx

(
1
2

+ i t, χ

)
(3)

with x = p1000 for χ3, χ7a, χ7b, respectively. The red curves are |L( 1
2 + i t, χ)|. This

function (3) is an analog of the eigenvalue density function in random matrix the-
ory. The Riemann zeta function on the critical line s = 1/2 + i t can be seen as a
characteristic polynomial of a certain infinite dimensional matrix [2,11]: With the
Riemann–Siegel theta function

ϑ(t)= Im log�
(

i t

2
+ 1

4

)
− t

2
logπ,

the function Z(t)= eiϑ(t)ζ( 1
2 + i t) turns out to be real. This is because the com-

pleted zeta function

ξ(s)= s(s −1)
2

π−s/2�
( s

2

)
ζ(s)

Figure 8. ρx (t) for χ3.

Figure 9. ρx (t) for χ7a .

Figure 10. ρx (t) for χ7b.
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is real on Re(s) = 1/2 due to the functional equation ξ(s) = ξ(1 − s). Dirichlet
L-functions also have similar representations. The real function Z(t) changes its
signature at nontrivial zeros of the Riemann zeta function. Thus Z(t) is expressed
as a regularized product

∞∏

j=1

reg
(t − t j ),

where t j satisfies ζ( 1
2 + i t j )=0. This means the argument of Z(t) jumps by π at the

zeros. Therefore when we define the density function of the nontrivial zeros on the
critical line as

ρ(t)=
∞∑

j=1

δ(t − t j )

= 1
π

Im
∞∑

j=1

1
t − t j

= 1
π

Im
d
dt

log
∞∏

j=1

reg
(t − t j ),

the function (3) should converge to this density function in the limit of x →∞, up
to the factor coming from ϑ(t). Here we simply write the delta function as δ(x)=
1
π

Im 1
x , which is originally represented as δ(x)= limε→0+ ± 1

π
Im 1

x∓iε .
Apparently the location of the zeros of |L( 1

2 + i t, χ)| agrees to that of the peaks
of ρx (t) in Figures 8, 9 and 10. This suggests that a finite set of first few primes
already “knows” the nontrivial zeros of L(s, χ), and that the Euler product would
be meaningful beyond the boundary. We also observe that the blue curve oscillates
near t =0 if and only if χ2 =1.

Figure 11 shows how the peaks of ρ(t) with the smallest zero in Figures 8,
9 and 10 get closer to the zeros of L(s, χ) for x = p10 (green), x = p100 (blue),
x = p1000 (yellow). We see these peaks getting higher and narrower, and approach-
ing the Dirac delta function. This kind of scaling behavior is often found in criti-
cal phenomena associated with some phase transitions. Especially, in this case, the
situation is similar to percolation theory [16].

Figures 12, 13 and 14 indicate the values

Rx (t)= 1
π

Im log Lx

(
1
2

+ i t, χ

)

for χ3, χ7a, χ7b, respectively, for x = p10 (green), x = p100 (blue), x = p1000 (yellow)
and ∞ (red). This also seems to reflect the property of DRH. The green, blue and
yellow curves appear to converge to the red one more smoothly only when χ2 �=1
(Figure 13). In the other two cases, the curves oscillate many times near the origin.
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Figure 11. Peaks in ρ(t) with the smallest zero for χ3 (left), χ7a (center) and χ7b
(right).

Figure 12. Rx (t) for χ3.

Figure 13. Rx (t) for χ7a .

Figure 14. Rx (t) for χ7b.
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The leaps in the red curves correspond to the zeros of L(s, χ). We normalize
that the jumps at zeros are equal to one. This reflects the conjecture that the mul-
tiplicity of such zeros should be all one. In other words, if we express their deriv-
atives by the Dirac delta function, the coefficients are one.

We define another function Nx (t) from Rx (t) by subtracting the contribution
of the L-function versions of the Riemann–Siegel theta function. This counts the
number of the nontrivial zeros on the critical line in the limit of x → ∞.
Figures 15, 16 and 17 show the values of Nx (t) for χ3, χ7a, χ7b, respectively. The
panels of Figures 18, 19, 20 show Nx (t) around the smallest nontrivial zeros of the
L-functions with x = p10 (green), x = p50 (light blue), x = p100 (blue), x = p500 (pur-
ple), x = p1000 (yellow) and x =∞ (red). As the case of Rx (t), we see a sharp step
structure as the cut-off parameter x getting larger.

These figures also tell us that the values Im log L( 1
2 + i t) are almost stable for

nontrivial zeros 1
2 + i t of the L-function, no matter how many prime numbers we

Figure 15. Nx (t) for χ3.

Figure 16. Nx (t) for χ7a .

Figure 17. Nx (t) for χ7b.
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Figure 18. Nx (t) (left) and Ñx (z) (right) for χ3.

Figure 19. Nx (t) (left) and Ñx (z) (right) for χ7a .

Figure 20. Nx (t) (left) and Ñx (z) (right) for χ7b.

take into account. This suggests that the nontrivial zeros are analogs of the critical
points in statistical mechanics, which are stable to the finite-size correction.

To examine the analogy to critical phenomena in statistical mechanics, we shall
check the scaling property around the critical point. Being the smallest zero 1

2 + i t1,
we define the scaling variable

z = t − t1
t1

xλ.

Correspondingly we introduce a scaled function Ñx (z), defined as Nx (t)= Ñx (z =
t−t1

t1
xλ). Right panels of Figures 18, 19 and 20 show the values of Ñx (z). By choos-

ing a proper exponent λ, all the curves are almost approximated by only one curve.
This means that the dependence on the cut-off parameter x appears only in the
form of the scaling variable z. This scaling behavior supports the similarity to the
critical phenomena.

Table III shows the numerical values of the smallest zeros of the L-functions and
the corresponding exponents for χ3, χ7a and χ7b. These exponents are numerically
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Table III. Numerically evaluated exponents around the smallest zeros 1
2 + i t1 for χ3, χ7a

and χ7b

Character t1 λ

χ3 8.0397. . . 0.217
χ7a 5.1981. . . 0.193
χ7b 4.4757. . . 0.151

determined by fitting the curves of Ñx (z) by changing the parameter x =10,50,100,
500,1000.

In the case of the ordinary critical phenomena, there is only one critical point.
On the other hand, there are infinitely many zeros on the critical line of the
L-function, which are analogs of the critical point. Thus, even if we focus on only
the smallest zero, as discussed in this study, there should be correction to its scal-
ing behavior from such other zeros: we have to take care of the scaling property
for others simultaneously.
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