# Universality of Hecke $L$-functions in the Grossencharacter-aspect 

Hidehiko Mishou<br>(Nagoya University)<br>Shin-ya Koyama<br>(Keio University)


#### Abstract

We consider the Hecke $L$-function $L\left(s, \lambda^{m}\right)$ of the imaginary quadratic field $\mathbb{Q}(i)$ with the $m$-th Grossencharacter $\lambda^{m}$. We obtain the universality property of $L\left(s, \lambda^{m}\right)$ as both $m$ and $t=$ $\operatorname{Im}(s)$ go to infinity.


Key words: Hecke $L$-function, universality of zeta functions, Grossencharacter, imaginary quadratic field,

2000 Mathematics Subject Classification: Primary 11M41, Secondary 19R42

## 1 Introduction

Voronin [V] discovered the universality property of the Riemann zeta function in 1975, which is stated as follows:

Voronin's Theorem Let $C$ be a compact subset of the strip $\left\{s=\sigma+i \tau \in \mathbb{C} \left\lvert\, \frac{1}{2}<\sigma<1\right.\right\}$ with connected complement. Let $f(s)$ be a non-vanishing continuous function on $C$ which is analytic in the interior of $C$. Then for any $\varepsilon>0$,

$$
\varliminf_{T \rightarrow \infty} \frac{\mu\left(\left\{t \in[0, T]\left|\sup _{s \in C}\right| \zeta(s+i t)-f(s) \mid<\varepsilon\right\}\right)}{T}
$$

where $\mu$ is the Lebesgue measure on $\mathbb{R}$.
This result was extended to various zeta functions. The first author proved it for Hecke $L$-functions with ideal class characters [M1] and for those with Grossencharacters [M2]. The universality properties are also generalized to various aspects of zeta functions. Recently Nagoshi proved them for automorphic $L$-functions of $G L(2)$ in the aspect where their
weight or level of the cusp forms grows [N1]. Nagoshi also generalized it to Maass cusp forms for $G L(2)$ in the aspect of the Laplace eigenvalues [N2].

In this paper we deal with the Hecke $L$-functions $L\left(s, \lambda^{m}\right)$ of $\mathbb{Q}(i)$ with Grossencharacters $\lambda^{m}(m \in$ $\mathbb{Z}$ ), where $\lambda$ is a fixed generator of Grossencharacters. We consider the universality property as both $\tau$ and $m$ grow. More precisely our results are stated as follows:

Let $K=\mathbb{Q}(i)$, and for an ideal $\mathfrak{a}=(\alpha) \in K$, the $m$-th Grossencharacter is given by $\lambda^{m}(\mathfrak{a}):=\left(\frac{\alpha}{|\alpha|}\right)^{4 m}$ for $m \in \mathbb{Z}$. The Hecke $L$-function is defined by $L\left(s, \lambda^{m}\right)=\sum_{\mathfrak{a}} \lambda^{m}(\mathfrak{a}) N(\mathfrak{a})^{-s}$ for $\sigma=\operatorname{Re}(s)>1$.

Theorem 1.1 Let $C$ be a compact subset in the strip $\left\{s \in \mathbb{C} \left\lvert\, \frac{1}{2}<\sigma<1\right.\right\}$. For any function $f(s)$ which is nonzero and continuous on $C$ and which is holomorphic on $\operatorname{Int}(C)$, and for any $\varepsilon>0$, we have

$$
\begin{align*}
& \underline{\lim } \frac{1}{T \rightarrow \infty} \mu^{\prime}(\{(t, m) \in[0, T] \times\{0, \ldots,[T]\} \mid  \tag{1.1}\\
& \left.\left.\max _{s \in C}\left|L\left(s+i t, \lambda^{m}\right)-f(s)\right|<\varepsilon\right\}\right)>0
\end{align*}
$$

where $\mu^{\prime}$ is the product measure on $\mathbb{R} \times \mathbb{Z}$.
Remark 1.2 (a) It is possible to extend Theorem 1.1 to any imaginary quadratic field $K$ of class number one, and to general Hecke character $\chi \lambda^{m}$ with nontrivial narrow class character $\chi$.
(b) In case $K$ is a general number field of finite degree, (1.1) would be formulated as follows: Let $n=[K: \mathbb{Q}]$ and $\lambda_{1}, \ldots, \lambda_{n-1}$ be a fixed set of generators of Grossencharacters of $K$. Put $\lambda^{m}=\lambda_{1}^{m_{1}} \cdots \lambda_{n-1}^{m_{n-1}}$ for $m=\left(m_{1}, \ldots, m_{n-1}\right) \in$ $\mathbb{Z}^{n-1}$. Then under the above settings we would have

$$
\begin{aligned}
& \varliminf_{T \rightarrow \infty} \frac{1}{T^{n}} \mu^{\prime}\left(\left\{(t, m) \in[0, T]^{n} \mid\right.\right. \\
& \left.\left.\quad \max _{s \in C}\left|L\left(s+i t, \lambda^{m}\right)-f(s)\right|<\varepsilon\right\}\right)>0
\end{aligned}
$$

with $\mu^{\prime}$ the product measure on $\mathbb{R} \times \mathbb{Z}^{n-1}$. This will be treated in the forthcoming paper [M3].
(c) In Theorem 1.1, it is unfortunate that the range of $m$ and $t$ must be the same. The universality in the $m$-aspect with $t$ being fixed should also be proved. Difficulty lies in the proof of the mean value theorem for Dirichlet series over $O_{K}$ twisted by $\lambda^{m}$. Duke it in [D, Theoreom 1.1], where he takes the average over $(m, t) \in$
$\{0, \ldots,[T]\} \times[0, T]$. He conjectures that the mean value theorem should hold in case of $(m, t) \in$ $\{0, \ldots, M\} \times[0, T]$. We see from the proof of our Theorem 1.1 that Duke's conjecture would imply the universality in the m-aspect.
(d) The Grossencharacter-aspect is also considered in a different context. Petridis and Sarnak [PS] obtain a subconvexity estimate of automorphic $L$-functions $L(s, \phi)$ for a Maass cusp form $\phi$ of $S L(2, Z[i])$. In order to prove it they consider the twists with Grossencharacters and take an avarage $\sum \int\left|L\left(\frac{1}{2}+i t, \phi \otimes \lambda^{m}\right)\right|^{2} d t$, where the summation and the integration is taken over certain range of $(m, t)$. Consequently they succeed in obtaining subconvexities in the both $m$ and $t$ aspects.

## 2 Propositions

For describing the proof of our main result, we put for $z>0$

$$
L_{z}\left(s, \lambda^{m}\right):=\prod_{N(\mathfrak{p}) \leq z}\left(1-\frac{\lambda^{m}(\mathfrak{p})}{N(\mathfrak{p})^{s}}\right)^{-1}
$$

where $\mathfrak{p}$ denotes a prime ideal. Theorem 1.1 is an immediate consequence of the following propositions:

Proposition 2.1 For any $\varepsilon>0$ there exists $z_{0}>0$ such that for any $z>z_{0}$

$$
\max _{s \in C}\left|\log L\left(s+i t, \lambda^{m}\right)-\log L_{z}\left(s+i t, \lambda^{m}\right)\right|<\varepsilon
$$

holds as $T \rightarrow \infty$ for any $(t, m)$ in a subset of $[0, T] \times\{0, \ldots,[T]\}$ with positive deinsity which is greater than $1-\varepsilon$.

Proposition 2.2 For any $\varepsilon>0$ there exists $z_{1}>0$ such that for any $z>z_{1}$

$$
\max _{s \in C}\left|\log L_{z}\left(s+i t, \lambda^{m}\right)-\log f(s)\right|<\varepsilon
$$

holds as $T \rightarrow \infty$ for any $(t, m)$ in a subset of $[0, T] \times$ $\{0, \ldots,[T]\}$ with positive density which depends only on $\varepsilon$.

Since the intersection of the sets of $(t, m)$ in Propositions 2.1 and 2.2 has a positive density, Theorem 1.1 follows.

## 3 Proof of Proposition 2.1

Put $a_{m}(n)$ to be the coefficient in the Dirichlet series expansion of $L\left(s, \lambda^{m}\right): L\left(s, \lambda^{m}\right)=\sum_{n=1}^{\infty} a_{m}(n) n^{-s}$. We use the following approximate functional equation of Ramachandra type:

Lemma 3.1 For $s=\sigma+$ it and $x, y>0, x y=t^{2}$, under the conditions that $\sigma<\alpha<2,0<\beta<\sigma$, $0<\gamma<2$, we have
$L\left(s, \lambda^{m}\right)=A+B+J_{1}+J_{2}-\frac{W(m)}{2 \pi i} \pi^{2 s-1}\left(J_{3}+J_{4}\right)$,
where $|W(m)|=1$ and

$$
\begin{aligned}
& A=\sum_{n \leq x} \frac{a_{m}(n)}{n^{s}}, \\
& B=W(m) \pi^{2 s-1} \frac{\Gamma(1-s+2 m)}{\Gamma(s+2 m)} \sum_{n \leq y} \frac{\overline{a_{m}(n)}}{n^{1-s}}, \\
& J_{1}=\frac{1}{2 \pi i} \int_{(-\gamma)} x^{w} \frac{\Gamma\left(1+\frac{w}{2}\right)}{w} \sum_{n \leq x} \frac{a_{m}(n)}{n^{s+w}} d w, \\
& J_{2}=\sum_{n>x} \frac{a_{m}(n)}{n^{s}} e^{-(n / x)^{2}}, \\
& J_{3}=\frac{1}{2 \pi i} \int_{(\beta)}\left(\pi^{2} x\right)^{w} \frac{\Gamma(1-s-w+2 m)}{\Gamma(s+w+2 m)} \frac{\Gamma\left(1+\frac{w}{2}\right)}{w} \\
& \times \sum_{n \leq y} \frac{\overline{a_{m}(n)}}{n^{1-s-w}} d w, \\
& J_{4}=\frac{1}{2 \pi i} \int_{(-\alpha)}\left(\pi^{2} x\right)^{w} \frac{\Gamma(1-s-w+2 m)}{\Gamma(s+w+2 m)} \frac{\Gamma\left(1+\frac{w}{2}\right)}{w} \\
& \times \sum_{n>y} \frac{\overline{a_{m}(n)}}{n^{1-s-w}} d w .
\end{aligned}
$$

Let $C_{1}$ be a compact set in $\left\{s \in \mathbb{C} \left\lvert\, \frac{1}{2}<\sigma<1\right.\right\}$ such that $C \subset C_{1}$. We will compute the integral

$$
I=\sum_{m=T}^{2 T} \int_{T}^{2 T} \iint_{C_{1}}\left|\frac{L\left(s+i t, \lambda^{m}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d \sigma d \tau d t
$$

By changing the order of the integration and the sum, it follows that

$$
I=\iint_{C_{1}} \sum_{m=T}^{2 T} \int_{T}^{2 T}\left|\frac{L\left(s+i t, \lambda^{m}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d t d \sigma d \tau
$$

By Lemma 3.1 we have

$$
\begin{align*}
& \sum_{m=T}^{2 T} \int_{T}^{2 T}\left|\frac{L\left(s+i t, \lambda^{m}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d t  \tag{3.1}\\
& =\sum_{m=T}^{2 T} \int_{T}^{2 T} \\
& \quad\left|\frac{A+B+J_{1}+J_{2}-\frac{W(m)}{2 \pi i} \pi^{2 s-1}\left(J_{3}+J_{4}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} \\
& \ll \sum_{m=T}^{2 T} \int_{T}^{2 T}\left|\frac{A}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d t \\
& \quad+\sum_{m=T}^{2 T} \int_{T}^{2 T}\left|\frac{B}{L_{z}\left(s+i t, \lambda^{m}\right)}\right|^{2} d t \\
& \quad+\cdots \\
& \quad+\sum_{m=T}^{2 T} \int_{T}^{2 T}\left|\frac{W(m)}{2 \pi i} \pi^{2 s-1} \frac{J_{4}}{L_{z}\left(s+i t, \lambda^{m}\right)}\right|^{2} d t
\end{align*}
$$

We will compute each term in (3.1) which we put as $I_{A}, I_{B}, I_{J_{1}}, \ldots, I_{J_{4}}$. By putting $x=T$ we have for some coefficients $b_{m}(n)$ with $\left|b_{m}(n)\right|<n^{\varepsilon}$ such that

$$
L_{z}\left(s, \lambda^{m}\right)^{-1} \sum_{n \leq T} \frac{a_{m}(n)}{n^{s}}=1+\sum_{z<n<z^{\varepsilon} T} \frac{b_{m}(n)}{n^{s}} .
$$

Thus

$$
\begin{align*}
I_{A} & =\sum_{m=T}^{2 T} \int_{T}^{2 T}\left|\frac{A}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d t  \tag{3.2}\\
& =\sum_{m=T}^{2 T} \int_{T}^{2 T}\left|\sum_{z<n<z^{\varepsilon} T} \frac{b_{m}(n)}{n^{s}}\right|^{2} d t .
\end{align*}
$$

By the theorem of Montgomery-Vaughn, (3.2) is estimated by

$$
\begin{array}{r}
T\left(T \sum_{z<n<z^{\varepsilon} T} \frac{1}{n^{2 \sigma-\varepsilon}}+\sum_{z<n<z^{\varepsilon} T} \frac{1}{n^{2 \sigma-\varepsilon-1}}\right)  \tag{3.3}\\
\ll T^{2}\left(z^{1-2 \sigma+\varepsilon}+T^{1-2 \sigma+\varepsilon}\right)
\end{array}
$$

The contribution $I_{B}$ from the term $B$ to (3.1) is computed by using Stirling's formula as

$$
\begin{equation*}
I_{B} \ll T^{3-2 \sigma+\varepsilon} \tag{3.4}
\end{equation*}
$$

The third term $I_{J_{1}}$ from $J_{1}$ is dealt with by our using the Cauchy inequality as

$$
\begin{equation*}
I_{J_{1}} \ll T^{3-2 \sigma+\varepsilon} . \tag{3.5}
\end{equation*}
$$

The remaining terms $I_{J_{2}}, \ldots, I_{J_{4}}$ are similarly estimated. Taking (3.3), (3.4), (3.5) into account we have

$$
\begin{aligned}
\sum_{m=T}^{2 T} \iint_{C_{1}} \int_{T}^{2 T} & \left|\frac{L\left(s+i t, \lambda^{m}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d t d \sigma d \tau \\
& \ll C_{1} T^{2}\left(z^{1-2 \sigma_{1}+\varepsilon}+T^{1-2 \sigma_{1}+\varepsilon}\right)
\end{aligned}
$$

where $\sigma_{1}=\min \left\{\sigma \in C_{1}\right\}$. Since $\sigma_{1}>\frac{1}{2}$, by taking $z_{0}$ as $z_{0}^{1-2 \sigma_{1}+\varepsilon}=\varepsilon^{3}$, we have

$$
\begin{align*}
& \frac{1}{T^{2}} \sum_{m=T}^{2 T} \int_{T}^{2 T}  \tag{3.6}\\
& \left(\iint_{C_{1}}\left|\frac{L\left(s+i t, \lambda^{m}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d \sigma d \tau\right) d t<\varepsilon^{3}
\end{align*}
$$

for $z>z_{0}, T>T_{0}(z)$. It follows from (3.6) that there exists a subset $A_{T}$ of $[0, T] \times\{0, \cdots,[T]\}$ with positive density greater than $1-\varepsilon$ such that

$$
\iint_{C_{1}}\left|\frac{L\left(s+i t, \lambda^{m}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|^{2} d \sigma d \tau<\varepsilon^{2}
$$

for any $(t, m) \in A_{T}$. We then have

$$
\max _{s \in C}\left|\frac{L\left(s+i t, \lambda^{m}\right)}{L_{z}\left(s+i t, \lambda^{m}\right)}-1\right|<_{C, C_{1}} \varepsilon .
$$

This means that

$$
\begin{aligned}
& \max _{s \in C}\left|\log L\left(s+i t, \lambda^{m}\right)-\log L_{z}\left(s+i t, \lambda^{m}\right)\right|<_{C, C_{1}} \varepsilon \\
& \text { for }(t, m) \in A_{T}
\end{aligned}
$$

Remark 3.2 Duke's conjecture [D] would make it possible to deal with the variables $m$ and $t$ separately.

## 4 Proof of Proposition 2.2

Lemma 4.1 (Gonek [G]) Let $C$ be a simply connected compact set of the strip $\frac{1}{2}<\sigma<1$. Let $h(s)$ be a continuous function on $C$ which is regular on $\operatorname{Int}(C)$. For any $y>0$ there exist $\nu_{0}=\nu_{0}(C, h, y)$ and $\theta_{p}^{(0)} \in[0,1]$ such that

$$
\max _{s \in C}\left|h(s)-\sum_{\substack{y<p \leq \nu \\ p \equiv 1 \\(\bmod 4)}} \frac{e\left(\theta_{p}^{(0)}\right)}{p^{s}}\right|<_{C} y^{-\frac{1}{2}}
$$

for any $\nu>\nu_{0}$, where $p$ denotes the prime numbers.

Lemma 4.2 ([KV] Theorems 8.1, 8.2) Let $a_{n} \in$ $\mathbb{R}(1 \leq n \leq N)$ be linearly independent over $\mathbb{Q}$. Then we have
(i) If we put

$$
I_{A}(T):=\left\{t \in[0, T] \mid\left(\left\{a_{1} t\right\}, \ldots,\left\{a_{N} t\right\}\right) \in A\right\}
$$

for any closed Jordan measurable set $A \subset$ $[0,1]^{N}$ and for $T>0$, where $\{x\}=x-[x]$, it holds that $\lim _{T \rightarrow \infty} \frac{\mu\left(I_{A}(T)\right)}{T}=\mu_{N}(A)$ with $\mu_{N}$ the Lebesgue measure on $\mathbb{R}^{N}$.
(ii) Let $\Omega$ be a set of continuous functions on A. If $\Omega$ is uniformuly bounded and is equicontinuous, it holds uniformly on $f \in \Omega$ that

$$
\begin{aligned}
\lim _{T \rightarrow \infty} & \frac{1}{T} \int_{I_{A}(T)} f\left(\left\{a_{1} t\right\}, \ldots,\left\{a_{N} t\right\}\right) d t \\
& =\int \cdots \int_{A} f\left(x_{1}, \ldots, x_{N}\right) d x_{1} \cdots d x_{N}
\end{aligned}
$$

Lemma 4.3 Let $p \equiv 1(\bmod 4)$ and $(p)=\mathfrak{p} \overline{\mathfrak{p}}$ with $\mathfrak{p}$ a prime ideal in $K$. We put $\theta_{p}$ as $\lambda(\mathfrak{p})=e^{i \theta_{p}}$. Then $\left\{\theta_{p}\right\}_{p \equiv 1(\bmod 4)}$ is linearly independent over $\mathbb{Q}$.

Proof. Putting $\mathfrak{p}=(a+b i)(a, b \in \mathbb{Z})$, we have $|\alpha|=$ $\sqrt{p}$ and so $\lambda(\mathfrak{p})=\left(\frac{a+b i}{\sqrt{p}}\right)^{4}$. Thus $\cos \theta_{p}, \sin \theta_{p} \in$ $\mathbb{Z}\left[\frac{1}{\sqrt{p}}\right]$. Assume an algebraic dependence as $M \theta_{p}=$ $m_{1} \theta_{p_{1}}+\cdots+m_{r} \theta_{p_{r}}$ with $M, m_{1}, \ldots, m_{r} \in \mathbb{Z}$. Then in the equation $\cos \left(M \theta_{p}\right)=\cos \left(m_{1} \theta_{p_{1}}+\cdots+m_{r} \theta_{p_{r}}\right)$, the left hand side belongs to $\mathbb{Z}\left[\frac{1}{\sqrt{p}}\right]$, whereas the right hand side is in $\mathbb{Z}\left[\frac{1}{\sqrt{p_{1}}}, \ldots, \frac{1}{\sqrt{p_{r}}}\right]$. Hence it holds if and only if $\cos \left(M \theta_{p}\right) \in \mathbb{Z}$. Therefore we have $M=0$.

Proof of Proposition 2.2 We have

$$
\begin{aligned}
\log L_{z}\left(s, \lambda^{m}\right) & =\sum_{\substack{p \leq 1 \\
p=z \\
(\bmod 4)}} \sum_{k=1}^{\infty} \frac{2 \cos \left(k m \theta_{p}\right)}{k p^{s}} \\
& +\sum_{\substack{p \leq z \\
p \equiv 3 \\
(\bmod 4)}} \sum_{k=1}^{\infty} \frac{1}{k p^{2 k s}}+\sum_{k=1}^{\infty} \frac{1}{k 2^{k s}}
\end{aligned}
$$

We split the sums over $p \leq z$ into the ones over $p \leq y$ and $y<p \leq z$ with $0<y<z$. We also divide the sum over $1 \leq k<\infty$ into $k=1,2 \leq k<N$, and $k \geq$ $N$ with $N=\left[\sigma \log _{2} y\right]$. For partial sums we have the estimates $\sum_{y<p \leq z} \sum_{2 \leq k<N} \frac{2 \cos \left(k m \theta_{p}\right)}{k p^{s}} \ll y^{1-2 \sigma}$ and
$\sum_{p \leq y} \sum_{k \geq N} \frac{2 \cos \left(k m \theta_{p}\right)}{k p^{s}} \ll y 2^{-N \sigma} \ll y^{1-2 \sigma}$. Hence
(4.1) $\log L_{z}\left(s+i t, \lambda^{m}\right)$

$$
\begin{aligned}
&=\sum_{\substack{y<p \leq z \\
p \equiv 1 \\
(\bmod 4)}} \frac{2 \cos \left(m \theta_{p}\right)}{p^{s}}+l(s+i t, y, m) \\
&+O\left(y^{1-2 \sigma}\right)
\end{aligned}
$$

where

$$
\begin{align*}
l(s, y, m)= & \sum_{\substack{p \leq y \\
p \equiv 1}} \sum_{k \leq N} \frac{2 \cos \left(k m \theta_{p}\right)}{k p^{k s}}  \tag{4.2}\\
& +\sum_{\substack{p^{2} \leq y \\
p \equiv 3}} \sum_{k \leq N} \frac{1}{k p^{2 k s}}+\sum_{k \leq N} \frac{1}{k 2^{k s}} .
\end{align*}
$$

We fix sufficiently large $y$ which satisfies $y^{1-2 \sigma}<\varepsilon$ and $y^{-\frac{1}{2}}<\varepsilon$. Apply Lemma 4.1 for $h(s)=\frac{1}{2}(g(s)-$ $l(s, y, 0))$ and fix $\nu>\nu_{0}$. Then for any $z>\nu$,

$$
\begin{align*}
&\left|\log L_{z}\left(s+i t, \lambda^{m}\right)-g(s)\right| \\
& \leq\left|\sum_{\substack{y<p \leq \nu \\
(\bmod 4)}} \frac{2 \cos \left(m \theta_{p}\right)}{p^{s+i t}}-\sum_{y<p \leq \nu} \frac{2 e\left(\theta_{p}^{(0)}\right)}{p^{s}}\right|  \tag{4.3}\\
&+|l(s+i t, y, m)-l(s, y, 0)|  \tag{4.4}\\
&+\left|\sum_{\substack{\nu<p \leq z \\
p \equiv 1 \\
(\bmod 4)}} \frac{2 \cos \left(m \theta_{p}\right)}{p^{s+i t}}\right|+\varepsilon . \tag{4.5}
\end{align*}
$$

We first deal with (4.3). It is less than

$$
\begin{align*}
& \sum_{\substack{y<p \leq \nu \\
p \equiv 1 \\
(\bmod 4)}} \frac{2}{p^{\sigma}}\left|\frac{\cos \left(m \theta_{p}\right)}{p^{i t}}-e\left(\theta_{p}^{(0)}\right)\right|  \tag{4.6}\\
= & \sum_{\substack{y<p \leq \nu \\
p \equiv 1 \\
(\bmod 4)}} \frac{2}{p^{\sigma}}\left|\cos \left(m \theta_{p}\right) e^{-i t \log p}-e\left(\theta_{p}^{(0)}\right)\right|
\end{align*}
$$

Hence if we take a sufficiently small $\delta>0$ and put

$$
\begin{aligned}
& V_{T}^{(1)}=\left\{0 \leq m \leq T \mid\left\|m \theta_{p}\right\|<\delta\right. \\
& (y<p \leq \nu, p \equiv 1 \quad(\bmod 4))\} \\
& U_{T}^{(1)}=\left\{t \in[0, T] \left\lvert\,\left\|t \frac{\log p}{2 \pi}-\theta_{p}^{(0)}\right\|<\delta\right.\right. \\
& (y<p \leq \nu, p \equiv 1 \quad(\bmod 4))\}
\end{aligned}
$$

then for any $(m, t) \in V_{T}^{(1)} \times U_{T}^{(1)}$, it holds that $(4.6)<$ $\varepsilon$. By Lemmas 4.2, 4.3, and the linear indepencence
over $\mathbb{Q}$ of $\{\log p\}$, we have

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\mu^{\prime}\left(V_{T}^{(1)} \times U_{T}^{(1)}\right)}{T^{2}}=\#\left(V^{(1)}\right) \times \mu\left(U^{(1)}\right) \tag{4.7}
\end{equation*}
$$

for some $V^{(1)}, U^{(1)} \subset \mathbb{R}^{\pi(\nu)-\pi(y)}$ with $\pi(x)$ the number of primes not greater than $x$.

Next we consider (4.4). It is less than

$$
\begin{array}{r}
\sum_{\substack{p \leq y \\
p \equiv 1 \\
(\bmod 4)}} \sum_{1 \leq k \leq N} \frac{1}{k p^{k \sigma}}\left|\frac{2 \cos \left(k m \theta_{p}\right)}{p^{i k t}}-2\right|  \tag{4.8}\\
+\sum_{\substack{p^{2} \leq y \\
p \equiv 3}} \sum_{1 \leq k \leq N} \frac{1}{k p^{2 k \sigma}}\left|\frac{1}{p^{2 i k t}}-1\right| \\
\\
+\sum_{1 \leq k \leq N} \frac{1}{2^{k \sigma}}\left|\frac{1}{2^{i k t}}-1\right| .
\end{array}
$$

Again we take a sufficiently small $\delta^{\prime}>0$ and put

$$
\begin{aligned}
& V_{T}^{(2)}=\left\{0 \leq m \leq T \mid\left\|m \theta_{p}\right\|<\delta^{\prime}\right. \\
&(p \leq y, p \equiv 1 \quad(\bmod 4))\} \\
& U_{T}^{(2)}=\left\{t \in[0, T] \left\lvert\,\left\|t \frac{\log p}{2 \pi}\right\|<\delta^{\prime}(p \leq y)\right.\right\}
\end{aligned}
$$

Then for any $(m, t) \in V_{T}^{(2)} \times U_{T}^{(2)}$, it holds that $(4.8)<$ $\varepsilon$.

We put

$$
\begin{aligned}
& V_{T}=\{0 \leq m \leq T \mid \\
& \left\|m \theta_{p}\right\|<\delta(y<p \leq \nu, \quad p \equiv 1(\bmod 4)), \\
& \left.\left\|m \theta_{p}\right\|<\delta^{\prime} \quad(p \leq y, \quad p \equiv 1(\bmod 4))\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
U_{T}= & \{t \in[0, T] \mid \\
& \left\|t \frac{\log p}{2 \pi}-\theta_{p}^{(0)}\right\|<\delta(y<p \leq \nu, p \equiv 1(\bmod 4)), \\
& \left.\left\|t \frac{\log p}{2 \pi}\right\|<\delta^{\prime} \quad(p \leq y)\right\} .
\end{aligned}
$$

Then (4.3) and (4.4) are bounded by $\varepsilon$ for any $(m, t) \in V_{T} \times U_{T}$, and we have

$$
\begin{aligned}
\lim _{T \rightarrow \infty} \frac{\# V_{T}}{T} & =\operatorname{vol}(V)=(2 \delta)^{\frac{\pi(\nu)-\pi(y)}{2}}\left(2 \delta^{\prime}\right)^{\frac{\pi(y)}{2}} \\
\lim _{T \rightarrow \infty} \frac{\mu\left(U_{T}\right)}{T} & =\operatorname{vol}(U)=(2 \delta)^{\pi(\nu)-\pi(y)}\left(2 \delta^{\prime}\right)^{\pi(y)}
\end{aligned}
$$

where $U$ and $V$ are subsets of $[0,1]^{\pi(\nu)}$. Here we have proved that (4.3) and (4.4) are less than $\varepsilon$ for any $(m, t)$ in a set with positive density.

Lastly we can check that (4.5) is less than $\varepsilon$ for almost all $(m, t) \in U_{T} \times V_{T}$. This completes the proof of the theorem.

## References

[D] W. Duke: Some problems in multidimensional analytic number theory, Acta Arith. 52 (1989) 203-228
[G] S.M. Gonek: Analytic properties of zeta and $L$-functions, Ph.D. thesis, University of Michigan, 1979
[KV] A.A. Karatsuba and S.M. Voronin: The Riemann Zeta-Function, Walter de Gruyter, 1992
[M1] H. Mishou: The universality theorem for $L$ functions associated with ideal class characters, Acta Arith. 98 (2001) 395-410
[M2] H. Mishou: The universality theorem for Hecke $L$-functions (preprint)
[M3] H. Mishou: The universality theorem for Hekce $L$-functions in the ( $m, t$ )-aspect (preprint)
[N1] H. Nagoshi: The universality of families of automorphic $L$-functions, (preprint)
[N2] H. Nagoshi: The universality of $L$-functions attached to eigenfunctions for $S L(2, \mathbb{Z})$, (preprint)
[V] S.M. Voronin: A theorem on the "universality" of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 475-486 (in Russian) $=$ Math. USSR-Izv. 9 (1975), 443-453
[PS] Y. Petridis and P. Sarnak: Quantum unique ergodicity for $S L_{2}(\mathcal{O}) \backslash H^{3}$ and estimates for $L$ functions, J. Evol. Equ. 1 (2001)

