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Abstract: We consider the Hecke L-function
L(s, λm) of the imaginary quadratic field Q(i) with
the m-th Grossencharacter λm. We obtain the uni-
versality property of L(s, λm) as both m and t =
Im(s) go to infinity.
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1 Introduction

Voronin [V] discovered the universality property of
the Riemann zeta function in 1975, which is stated
as follows:

Voronin’s Theorem Let C be a compact subset of
the strip {s = σ+iτ ∈ C | 1

2 < σ < 1} with connected
complement. Let f(s) be a non-vanishing continuous
function on C which is analytic in the interior of C.
Then for any ε > 0,

lim
T→∞

µ({t ∈ [0, T ] | sup
s∈C

|ζ(s + it) − f(s)| < ε})

T

> 0,

where µ is the Lebesgue measure on R.

This result was extended to various zeta functions.
The first author proved it for Hecke L-functions
with ideal class characters [M1] and for those with
Grossencharacters [M2]. The universality properties
are also generalized to various aspects of zeta func-
tions. Recently Nagoshi proved them for automor-
phic L-functions of GL(2) in the aspect where their

weight or level of the cusp forms grows [N1]. Nagoshi
also generalized it to Maass cusp forms for GL(2) in
the aspect of the Laplace eigenvalues [N2].

In this paper we deal with the Hecke L-functions
L(s, λm) of Q(i) with Grossencharacters λm (m ∈
Z), where λ is a fixed generator of Grossencharacters.
We consider the universality property as both τ and
m grow. More precisely our results are stated as
follows:

Let K = Q(i), and for an ideal a = (α) ∈ K, the
m-th Grossencharacter is given by λm(a) := ( α

|α| )
4m

for m ∈ Z. The Hecke L-function is defined by
L(s, λm) =

∑

a
λm(a)N(a)−s for σ = Re(s) > 1.

Theorem 1.1 Let C be a compact subset in the strip
{s ∈ C | 1

2 < σ < 1}. For any function f(s) which
is nonzero and continuous on C and which is holo-
morphic on Int(C), and for any ε > 0, we have

(1.1) lim
T→∞

1

T 2
µ′({(t, m) ∈ [0, T ]× {0, ..., [T ]} |

max
s∈C

|L(s + it, λm) − f(s)| < ε}) > 0,

where µ′ is the product measure on R × Z.

Remark 1.2 (a) It is possible to extend Theorem
1.1 to any imaginary quadratic field K of class
number one, and to general Hecke character χλm

with nontrivial narrow class character χ.

(b) In case K is a general number field of finite de-
gree, (1.1) would be formulated as follows: Let
n = [K : Q] and λ1, ..., λn−1 be a fixed set
of generators of Grossencharacters of K. Put
λm = λm1

1 · · ·λmn−1

n−1 for m=(m1, ...,mn−1) ∈
Zn−1. Then under the above settings we would
have

lim
T→∞

1

T n
µ′({(t, m) ∈ [0, T ]n

∣

∣

max
s∈C

|L(s + it, λm) − f(s)| < ε}) > 0

with µ′ the product measure on R × Zn−1. This
will be treated in the forthcoming paper [M3].

(c) In Theorem 1.1, it is unfortunate that the range
of m and t must be the same. The univer-
sality in the m-aspect with t being fixed should
also be proved. Difficulty lies in the proof of
the mean value theorem for Dirichlet series over
OK twisted by λm. Duke it in [D, Theoreom
1.1], where he takes the average over (m, t) ∈
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{0, ..., [T ]}× [0, T ]. He conjectures that the mean
value theorem should hold in case of (m, t) ∈
{0, ...,M}× [0, T ]. We see from the proof of our
Theorem 1.1 that Duke’s conjecture would imply
the universality in the m-aspect.

(d) The Grossencharacter-aspect is also considered
in a different context. Petridis and Sarnak [PS]
obtain a subconvexity estimate of automorphic
L-functions L(s, φ) for a Maass cusp form φ of
SL(2, Z[i]). In order to prove it they consider
the twists with Grossencharacters and take an
avarage

∑
∫

|L( 1
2 + it, φ ⊗ λm)|2dt, where the

summation and the integration is taken over cer-
tain range of (m, t). Consequently they succeed
in obtaining subconvexities in the both m and t

aspects.

2 Propositions

For describing the proof of our main result, we put
for z > 0

Lz(s, λ
m) :=

∏

N(p)≤z

(

1 − λm(p)

N(p)s

)−1

where p denotes a prime ideal. Theorem 1.1 is an
immediate consequence of the following propositions:

Proposition 2.1 For any ε > 0 there exists z0 > 0
such that for any z > z0

max
s∈C

| log L(s + it, λm) − log Lz(s + it, λm)| < ε

holds as T → ∞ for any (t,m) in a subset of
[0, T ] × {0, ..., [T ]} with positive deinsity which is
greater than 1 − ε.

Proposition 2.2 For any ε > 0 there exists z1 > 0
such that for any z > z1

max
s∈C

| log Lz(s + it, λm) − log f(s)| < ε

holds as T → ∞ for any (t,m) in a subset of [0, T ]×
{0, ..., [T ]} with positive density which depends only
on ε.

Since the intersection of the sets of (t,m) in Propo-
sitions 2.1 and 2.2 has a positive density, Theorem
1.1 follows.

3 Proof of Proposition 2.1

Put am(n) to be the coefficient in the Dirichlet series
expansion of L(s, λm): L(s, λm) =

∑∞
n=1 am(n)n−s.

We use the following approximate functional equa-
tion of Ramachandra type:

Lemma 3.1 For s = σ + it and x, y > 0, xy = t2,
under the conditions that σ < α < 2, 0 < β < σ,
0 < γ < 2, we have

L(s, λm) = A+ B + J1 + J2 −
W (m)

2πi
π2s−1(J3 + J4),

where |W (m)| = 1 and

A =
∑

n≤x

am(n)

ns
,

B = W (m)π2s−1 Γ(1 − s + 2m)

Γ(s + 2m)

∑

n≤y

am(n)

n1−s
,

J1 =
1

2πi

∫

(−γ)

xw Γ(1 + w
2 )

w

∑

n≤x

am(n)

ns+w
dw,

J2 =
∑

n>x

am(n)

ns
e−(n/x)2,

J3 =
1

2πi

∫

(β)

(π2x)w Γ(1 − s − w + 2m)

Γ(s + w + 2m)

Γ(1 + w
2 )

w

×
∑

n≤y

am(n)

n1−s−w
dw,

J4 =
1

2πi

∫

(−α)

(π2x)w Γ(1 − s − w + 2m)

Γ(s + w + 2m)

Γ(1 + w
2 )

w

×
∑

n>y

am(n)

n1−s−w
dw.

Let C1 be a compact set in {s ∈ C | 1
2 < σ < 1} such

that C ⊂ C1. We will compute the integral

I =

2T
∑

m=T

∫ 2T

T

∫∫

C1

∣

∣

∣

∣

L(s + it, λm)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dσdτdt

By changing the order of the integration and the
sum, it follows that

I =

∫∫

C1

2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

L(s + it, λm)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dtdσdτ.
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By Lemma 3.1 we have

2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

L(s + it, λm)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dt

=

2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

∣

A + B + J1 + J2 − W (m)
2πi π2s−1(J3 + J4)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

∣

2

dt

�
2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

A

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dt

+

2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

B

Lz(s + it, λm)

∣

∣

∣

∣

2

dt

+ · · ·

+

2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

W (m)

2πi
π2s−1 J4

Lz(s + it, λm)

∣

∣

∣

∣

2

dt

(3.1)

We will compute each term in (3.1) which we put as
IA, IB , IJ1 ,...,IJ4 . By putting x = T we have for
some coefficients bm(n) with |bm(n)| < nε such that

Lz(s, λ
m)−1

∑

n≤T

am(n)

ns
= 1 +

∑

z<n<zεT

bm(n)

ns
.

Thus

IA =

2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

A

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dt(3.2)

=

2T
∑

m=T

∫ 2T

T

∣

∣

∣

∣

∣

∑

z<n<zεT

bm(n)

ns

∣

∣

∣

∣

∣

2

dt.

By the theorem of Montgomery-Vaughn, (3.2) is es-
timated by

(3.3) T

(

T
∑

z<n<zεT

1

n2σ−ε
+

∑

z<n<zεT

1

n2σ−ε−1

)

� T 2(z1−2σ+ε + T 1−2σ+ε)

The contribution IB from the term B to (3.1) is com-
puted by using Stirling’s formula as

IB � T 3−2σ+ε.(3.4)

The third term IJ1 from J1 is dealt with by our using
the Cauchy inequality as

IJ1 � T 3−2σ+ε.(3.5)

The remaining terms IJ2 ,...,IJ4 are similarly esti-
mated. Taking (3.3), (3.4), (3.5) into account we
have

2T
∑

m=T

∫∫

C1

∫ 2T

T

∣

∣

∣

∣

L(s + it, λm)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dtdσdτ

�C1 T 2(z1−2σ1+ε + T 1−2σ1+ε),

where σ1 = min{σ ∈ C1}. Since σ1 > 1
2 , by taking

z0 as z1−2σ1+ε
0 = ε3, we have

(3.6)
1

T 2

2T
∑

m=T

∫ 2T

T
(

∫∫

C1

∣

∣

∣

∣

L(s + it, λm)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dσdτ

)

dt < ε3

for z > z0, T > T0(z). It follows from (3.6) that
there exists a subset AT of [0, T ]×{0, · · · , [T ]} with
positive density greater than 1 − ε such that

∫∫

C1

∣

∣

∣

∣

L(s + it, λm)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

2

dσdτ < ε2

for any (t,m) ∈ AT . We then have

max
s∈C

∣

∣

∣

∣

L(s + it, λm)

Lz(s + it, λm)
− 1

∣

∣

∣

∣

�C,C1 ε.

This means that

max
s∈C

|log L(s + it, λm) − log Lz(s + it, λm)| �C,C1 ε

for (t,m) ∈ AT .

Remark 3.2 Duke’s conjecture [D] would make it
possible to deal with the variables m and t separately.

4 Proof of Proposition 2.2

Lemma 4.1 (Gonek [G]) Let C be a simply con-
nected compact set of the strip 1

2 < σ < 1. Let h(s)
be a continuous function on C which is regular on
Int(C). For any y > 0 there exist ν0 = ν0(C,h, y)

and θ
(0)
p ∈ [0, 1] such that

max
s∈C

∣

∣

∣

∣

∣

∣

∣

h(s) −
∑

y<p≤ν

p≡1 (mod 4)

e(θ
(0)
p )

ps

∣

∣

∣

∣

∣

∣

∣

�C y− 1
2

for any ν > ν0, where p denotes the prime numbers.
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Lemma 4.2 ([KV] Theorems 8.1, 8.2) Let an ∈
R (1 ≤ n ≤ N) be linearly independent over Q. Then
we have

(i) If we put

IA(T ) := {t ∈ [0, T ] | ({a1t}, ..., {aN t}) ∈ A}

for any closed Jordan measurable set A ⊂
[0, 1]N and for T > 0, where {x} = x − [x], it

holds that limT→∞
µ(IA(T ))

T = µN (A) with µN

the Lebesgue measure on RN .

(ii) Let Ω be a set of continuous functions on
A. If Ω is uniformuly bounded and is equi-
continuous, it holds uniformly on f ∈ Ω that

lim
T→∞

1

T

∫

IA(T )

f({a1t}, ..., {aN t})dt

=

∫

· · ·
∫

A

f(x1, ..., xN )dx1 · · · dxN .

Lemma 4.3 Let p ≡ 1 (mod 4) and (p) = pp with p

a prime ideal in K. We put θp as λ(p) = eiθp . Then
{θp}p≡1 (mod 4) is linearly independent over Q.

Proof. Putting p = (a + bi) (a, b ∈ Z), we have |α| =√
p and so λ(p) = (a+bi√

p )4. Thus cos θp, sin θp ∈
Z[ 1√

p ]. Assume an algebraic dependence as Mθp =

m1θp1 + · · ·+mrθpr
with M, m1, ...,mr ∈ Z. Then in

the equation cos(Mθp) = cos(m1θp1 + · · · + mrθpr
),

the left hand side belongs to Z[ 1√
p ], whereas the right

hand side is in Z[ 1√
p1

, ..., 1√
pr

]. Hence it holds if and

only if cos(Mθp) ∈ Z. Therefore we have M = 0.

Proof of Proposition 2.2 We have

log Lz(s, λ
m) =

∑

p≤z

p≡1 (mod 4)

∞
∑

k=1

2 cos(kmθp)

kps

+
∑

p≤z

p≡3 (mod 4)

∞
∑

k=1

1

kp2ks
+

∞
∑

k=1

1

k2ks

We split the sums over p ≤ z into the ones over p ≤ y

and y < p ≤ z with 0 < y < z. We also divide the
sum over 1 ≤ k < ∞ into k = 1, 2 ≤ k < N , and k ≥
N with N = [σ log2 y]. For partial sums we have the

estimates
∑

y<p≤z

∑

2≤k<N
2 cos(kmθp)

kps � y1−2σ and

∑

p≤y

∑

k≥N
2 cos(kmθp)

kps � y2−Nσ � y1−2σ. Hence

(4.1) log Lz(s + it, λm)

=
∑

y<p≤z

p≡1 (mod 4)

2 cos(mθp)

ps
+ l(s + it, y, m)

+ O(y1−2σ),

where

(4.2) l(s, y, m) =
∑

p≤y

p≡1 (mod 4)

∑

k≤N

2 cos(kmθp)

kpks

+
∑

p2≤y

p≡3 (mod 4)

∑

k≤N

1

kp2ks
+
∑

k≤N

1

k2ks
.

We fix sufficiently large y which satisfies y1−2σ < ε

and y− 1
2 < ε. Apply Lemma 4.1 for h(s) = 1

2 (g(s)−
l(s, y, 0)) and fix ν > ν0. Then for any z > ν,

| log Lz(s + it, λm) − g(s)|

≤

∣

∣

∣

∣

∣

∣

∣

∑

y<p≤ν

p≡1 (mod 4)

2 cos(mθp)

ps+it
−
∑

y<p≤ν

2e(θ
(0)
p )

ps

∣

∣

∣

∣

∣

∣

∣

(4.3)

+ |l(s + it, y, m)− l(s, y, 0)|(4.4)

+

∣

∣

∣

∣

∣

∣

∣

∑

ν<p≤z

p≡1 (mod 4)

2 cos(mθp)

ps+it

∣

∣

∣

∣

∣

∣

∣

+ ε.(4.5)

We first deal with (4.3). It is less than

(4.6)
∑

y<p≤ν

p≡1 (mod 4)

2

pσ

∣

∣

∣

∣

cos(mθp)

pit
− e(θ(0)

p )

∣

∣

∣

∣

=
∑

y<p≤ν

p≡1 (mod 4)

2

pσ

∣

∣

∣
cos(mθp)e

−it log p − e(θ(0)
p )
∣

∣

∣

Hence if we take a sufficiently small δ > 0 and put

V
(1)
T = {0 ≤ m ≤ T | ‖mθp‖ < δ

(y < p ≤ ν, p ≡ 1 (mod 4))},

U
(1)
T =

{

t ∈ [0, T ] |
∥

∥

∥
t log p

2π − θ(0)
p

∥

∥

∥
< δ

(y < p ≤ ν, p ≡ 1 (mod 4))
}

,

then for any (m, t) ∈ V
(1)
T ×U

(1)
T , it holds that (4.6)<

ε. By Lemmas 4.2, 4.3, and the linear indepencence
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over Q of {log p}, we have

lim
T→∞

µ′(V (1)
T × U

(1)
T )

T 2
= #(V (1)) × µ(U (1))(4.7)

for some V (1), U (1) ⊂ Rπ(ν)−π(y) with π(x) the num-
ber of primes not greater than x.

Next we consider (4.4). It is less than

(4.8)
∑

p≤y

p≡1 (mod 4)

∑

1≤k≤N

1

kpkσ

∣

∣

∣

∣

2 cos(kmθp)

pikt
− 2

∣

∣

∣

∣

+
∑

p2≤y

p≡3 (mod 4)

∑

1≤k≤N

1

kp2kσ

∣

∣

∣

∣

1

p2ikt
− 1

∣

∣

∣

∣

+
∑

1≤k≤N

1

2kσ

∣

∣

∣

∣

1

2ikt
− 1

∣

∣

∣

∣

.

Again we take a sufficiently small δ′ > 0 and put

V
(2)
T = {0 ≤ m ≤ T | ‖mθp‖ < δ′

(p ≤ y, p ≡ 1 (mod 4))},

U
(2)
T =

{

t ∈ [0, T ] |
∥

∥

∥
t log p

2π

∥

∥

∥
< δ′(p ≤ y)

}

.

Then for any (m, t) ∈ V
(2)
T ×U

(2)
T , it holds that (4.8)<

ε.
We put

VT = {0 ≤ m ≤ T |
‖mθp‖ < δ (y < p ≤ ν, p ≡ 1(mod4)),

‖mθp‖ < δ′ (p ≤ y, p ≡ 1(mod4))}

and

UT ={t ∈ [0, T ] |
∥

∥

∥
t log p

2π − θ(0)
p

∥

∥

∥
< δ (y < p ≤ ν, p ≡ 1(mod4)),

∥

∥

∥
t log p

2π

∥

∥

∥
< δ′ (p ≤ y)}.

Then (4.3) and (4.4) are bounded by ε for any
(m, t) ∈ VT × UT , and we have

lim
T→∞

#VT

T
= vol(V ) = (2δ)

π(ν)−π(y)
2 (2δ′)

π(y)
2

lim
T→∞

µ(UT )

T
= vol(U) = (2δ)π(ν)−π(y)(2δ′)π(y)

where U and V are subsets of [0, 1]π(ν). Here we
have proved that (4.3) and (4.4) are less than ε for
any (m, t) in a set with positive density.

Lastly we can check that (4.5) is less than ε for
almost all (m, t) ∈ UT × VT . This completes the
proof of the theorem.
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