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1 Introduction

In the famous proof of the irrationality of ζ(3) due to Apéry [1], he used the following
expression:

ζ(3) =
5

2

∞
∑

n=1

(−1)n−1

n3
(

2n

n

) .

We refer to van der Poorten [2] and Koecher [3] for explanations and backgrounds. Also
Apéry gave a proof of the irrationality of ζ(2) by using

ζ(2) = 3
∞
∑

n=1

1

n2
(

2n

n

) .

We can find in [2] and [3] that

∞
∑

n=1

1
(

2n

n

) =
1

3
+

2
√

3π

27
,

∞
∑

n=1

1

n
(

2n

n

) =

√
3π

9
,

∞
∑

n=1

1

n2
(

2n

n

) =
π2

18
,

∞
∑

n=1

1

n4
(

2n

n

) =
π4

3240
.
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Unfortunately, it remains open to find the expression for

∞
∑

n=1

1

n3
(

2n

n

) .

The purpose of this paper is to investigate this problem via the triple sine function S3(x)
studied in the previous papers [4, 5, 6, 7, 8]. We refer to the excellent survey of Manin [9].
Here the triple sine function is defined as

S3(x) = e
x
2

2

∞
∏

n=1

(

(

1 − x2

n2

)n2

ex2

)

, (1.1)

which is an entire function of order 3. This reminds us of the usual sine function, and
actually we define the first sine function S1(x) as

S1(x) = 2 sin(πx) = 2πx
∞
∏

n=1

(

1 − x2

n2

)

.

Our result is

Theorem 1
∞
∑

n=1

1

n3
(

2n

n

) = 4π2 log S3

(

1

6

)

.

This is obtained as a special case of

Theorem 2
∞
∑

n=1

(2 sinπx)2n

n3
(

2n

n

) = 4π2 logS3(x)

for −1/2 5 x 5 1/2.

From Theorem 1 we moreover show the following identity:

Theorem 3 It holds that

∞
∑

n=1

1

n3
(

2n

n

) = −4

3
ζ(3) +

√
3π

3
(2L(2, χ6) − L(2, χ3)) ,

where χ6 and χ3 are the nontrivial characters modulo 6 and 3, respectively, and L(s, χ) is

the Dirichlet L-function.
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2 The Triple Sine Function

In this section we first recall basic properties of the triple sine function (1.1). We find from
the definition that

log S3(x) =
x2

2
+

∞
∑

n=1

(

n2 log

(

1 − x2

n2

)

+ x2

)

and thus

S ′

3

S3

(x) = πx2 cot(πx), (2.1)

where we used the identity

cot(πx) =
x

π

∞
∑

n=−∞

1

x2 − n2
.

Hence we have

log S3(x) = π

∫ x

0

t2 cot(πt)dt (2.2)

as the both sides vanish when x = 0. By

cot(πt) = i
1 + e−2iπt

1 − e−2iπt
= i

(

1 + 2
∞
∑

m=1

e−2πimt

)

, (Im(t) < 0)

it holds in Im(z) < 0 that

logS3(z) = i

∫ z

0

πt2

(

1 + 2

∞
∑

m=1

e−2πimt

)

dt,

where the contour is taken in Im(t) < 0. By integrating by parts, we compute
∫ z

0

t2eαtdt =
z2eαz

α
− 2zeαz

α2
+

2(eαz − 1)

α3
.

Therefore the following expression holds for Im(z) < 0.

log S3(z) = − 2

(2πi)2

∞
∑

n=1

(

e−2πizn − 1

n3
+ 2πiz

e−2πizn

n2
+

(2πiz)2

2

e−2πizn

n

)

+
πi

3
z3.

By taking the real part and by continuity, we have for x ∈ R (0 < x < 1)

log S3(x) =
2

(2π)2

∞
∑

n=1

(

cos(2πnx) − 1

n3
+

2πx sin(2πnx)

n2
− (2πx)2 cos(2πnx)

2n

)

.
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We appeal to the formula

log(2 sinπx) = −
∞
∑

n=1

cos(2πnx)

n

to get

logS3(x) = x2 log(2 sinπx) +
1

2π2

∞
∑

n=1

cos(2πnx)

n3
+

x

π

∞
∑

n=1

sin(2πnx)

n2
− 1

2π2
ζ(3). (2.3)

(We can prove this formula also by showing that both sides are 0 at x = 1 and that differ-
entiations of both sides are equal to πx2 cot(πx).)

Now, letting x = 1
6

we obtain,

log S3

(

1

6

)

=
1

2π2

(

∞
∑

n=1

cos nπ

3

n3
− ζ(3)

)

+
1

6π

∞
∑

n=1

sin nπ

3

n2
.

The Dirichlet series with coefficients sin nπ
3

and cos nπ
3

are calculated as follows:

∞
∑

n=1

sin nπ

3

n2
=

√
3

2





∑

n≡1,2 (mod 6)

1

n2
−

∑

n≡4,5 (mod 6)

1

n2





=

√
3

2



2





∑

n≡1 (mod 6)

1

n2
−

∑

n≡5 (mod 6)

1

n2



−





∑

n≡1,4 (mod 6)

1

n2
−

∑

n≡2,5 (mod 6)

1

n2









=

√
3

2
(2L(2, χ6) − L(2, χ3)) ,

∞
∑

n=1

cos nπ
3

n3
=

1

2





∑

n≡1,5 (mod 6)

1

n3
−

∑

n≡2,4 (mod 6)

1

n3



 +
∑

n≡0 (mod 6)

1

n3
−

∑

n≡3 (mod 6)

1

n3

=
∑

n≡1,5 (mod 6)

1

n3
− 1

2





∑

n≡1,2,4,5 (mod 6)

1

n3



+
∑

n≡0 (mod 6)

1

n3
−

∑

n≡3 (mod 6)

1

n3

= L(3,16) −
1

2
L(3,13) +

∑

n≡0 (mod 6)

1

n3
−

∑

n≡3 (mod 6)

1

n3

= (1 − 2−3)(1 − 3−3)ζ(3)− 1

2
(1 − 3−3)ζ(3) + 6−3ζ(3) − 3−3(1 − 2−3)ζ(3)

=
1

3
ζ(3),

where 1m denotes the trivial Dirichlet character modulo m. Thus we have
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Theorem 4

logS3

(

1

6

)

=
1

2π2

(

−2

3
ζ(3) +

√
3π

6
(2L(2, χ6) − L(2, χ3))

)

.

Remark 5 When x = 1
2

in (2.3), we have

log S3

(

1

2

)

=
1

4
log 2 +

1

2π2

∞
∑

n=1

(−1)n − 1

n3

=
1

4
log 2 − 1

π2

∑

n:odd

1

n3

=
1

4
log 2 − 7

8π2
ζ(3).

Hence

ζ(3) =
8π2

7
log

(

S3

(

1

2

)

−1

2
1

4

)

as in [4], [7], [8].

3 Proofs of Theorems

Theorem 1 is a special case of Theorem 2. Theorem 3 is obtained from Theorems 1 and 4.
Hence it suffices to prove Theorem 2. It is known by Euler ([2, p.203], [3, p.62]) that

∞
∑

n=1

(2 sin(πx))2n

n2
(

2n

n

) = 2π2x2

for −1/2 5 x 5 1/2. Therefore it follows that

∞
∑

n=1

1

n2

(

2n

n

)

−1

22n(sin(πx))2n−1 cos(πx) = 2π2x2 cot(πx).

Integrating both sides, we have

1

π

∞
∑

n=1

1

n3

(

2n

n

)

−1

22n−1(sin(πx))2n = 2π2

∫ x

0

t2 cot(πt)dt

= 2π log S3(x)

by the equation (2.2). This completes the proof of Theorem 2.
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ζ(3). Math. Intell. 1 (1979) 195-203.

[3] M. Koecher: Letters, Math. Intell. 2 (1980) 62-64.

[4] N. Kurokawa: Multiple sine functions and Selberg zeta functions. Proc. Japan Acad.
67A (1991) 61-64.

[5] N. Kurokawa: Gamma factors and Plancherel measures. Proc. Japan Acad. 68A (1992)
256-260.

[6] N. Kurokawa: Multiple zeta functions: an example. In Zeta Functions in Geometry,
volume 21 of Advanced Studies in Pure Math., pages 219-226, Kinokuniya, Tokyo
1992.

[7] N. Kurokawa and S. Koyama: Multiple sine functions. Forum Math. (in press)

[8] N. Kurokawa and M. Wakayama: On ζ(3). J. Ramanujan Math. Soc. 16 (2001) 205-
214.

[9] Yu. I. Manin: Lectures on zeta functions and motives (according to Deninger and
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