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1 Introduction

Multiple sine functions are generalizations of the usual sine function

S1(z) = 2 sin(πz) = 2πz

∞
∏

n=1

(

1 − z2

n2

)

. (1.1)

The double sine function S2(z) was firstly studied by Hölder [H] in 1886 from

S2(z) = ez

∞
∏

n=1

((

1 − z
n

1 + z
n

)n

e2z

)

. (1.2)

Here we construct multiple sine functions Sr(z) for r ≥ 3 also, and we study their basic
properties containing periodicity, special values, and algebraic differential equations. (Basic
results were reported in [Ku1, Ku2, Ku3]; see also [Ma] for a survey.)

For example, the triple sine function is given by

S3(z) = e
z2

2

∞
∏

n=1

(

(

1 − z2

n2

)n2

ez2

)

(1.3)

= exp

(
∫ z

0

πt2 cot(πt)dt

)

. (1.4)

Then we have the following expression for the famous mysterious value ζ(3) =
∞
∑

n=1

1

n3
:

ζ(3) =
8π2

7
log

(

S3

(

1

2

)−1

2
1
4

)

. (1.5)
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We notice that this expression (1.5) originates from an attempt of Euler [E] in 1772.
After general study of multiple sine functions, this paper presents an application to the

explicit calculation of the gamma factors of Selberg zeta functions in terms of multiple
gamma functions Γr(s) of Barnes [B]. In this process, normalized multiple sine functions
and the differential equations satisfied by the multiple sine functions and expressions like
(1.5) are used crucially. The result is as follows.

Let M = Γ\G/K be a compact locally symmetric space of rank one. We denote by
ZM(s, σ) the Selberg zeta function with a unitary representation σ of Γ:

ZM(s, σ) =
∏

p∈Prim(M )

∏

λ≥0

det(1 − σ(p)N(p)−s−λ),

where Prim(M) is the set of prime geodesics of M with their norm N(p) = exp(length(p)) and
λ runs over a certain semi-lattice [G]. It is known that ZM(s, σ) has an analytic continuation
to all s ∈ C as a meromorphic function of order dim M and has the following functional
equation [Se, G, W]:

ZM(2ρ0 − s, σ) = ZM(s, σ) exp

(

vol(M) dim(σ)

∫ s−ρ0

0

µM(it)dt

)

(1.6)

with ρ0 > 0 and µM(t) being the Plancherel measure.
We determine the gamma factor of ZM(s, σ) and obtain the functional equation of sym-

metric type:

Theorem 1.1 Let M = Γ\G/K be an even dimensional compact locally symmetric space
of rank one. Put

ΓM(s, σ) = det

(

√

∆M ′ + ρ2
0 + s − ρ0

)vol(M) dim(σ)(−1)dim M/2

where det means the regularized determinant, and M ′ = G′/K is the compact dual symmetric
space with ∆M ′ its Laplacian. Then

ΓM(s, σ) =











































(Γ2n(s)Γ2n(s + 1))vol(M) dim(σ)(−1)(dim M)/2−1

G = SO(1, 2n)
(

n
∏

k=0

Γ2n(s + k)(
n
k)

2
)vol(M) dim(σ)(−1)(dim M)/2−1

G = SU(1, n)

(

2n−1
∏

k=0

Γ4n(s + k)
1
2n(2n

k )( 2n
k+1)
)−vol(M) dim(σ)

G = Sp(1, n)

(Γ16(s)Γ16(s + 1)10Γ16(s + 2)28Γ16(s + 3)28

×Γ16(s + 4)10Γ16(s + 5))−vol(M) dim(σ) G = F4

(1.7)

The completed zeta function ẐM(s, σ) = ΓM(s, σ)ZM(s, σ) satisfies the symmetric functional
equation: ẐM(s, σ) = ẐM(2ρ0 − s, σ).
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Remark 1.2 In the case of a Riemann surface (G = SO(1, 2) ∼= SU(1, 1)), this result was
proved by Vigneras [Vi] and Cartier-Voros [CV]. If M is odd dimensional, the gamma factor
is trivial (see Section 4). In the general case by using the Selberg trace formula we moreover
have the following determinant expression similar to [Sa, Vo, Ko]:

ẐM(s, σ) = eQ((s−ρ0)2) det(∆M − s(2ρ0 − s)),

where Q is a polynomial with deg Q ≤ dimM/2.

Remark 1.3 This paper is an English version of a part of the following lecture note:
N. Kurokawa “Lectures on Multiple Sine Functions” (April-July, 1991, University of

Tokyo, notes taken by S. Koyama, pp. 1-119).

Acknowledgment. The first author would like to express his hearty thanks to Christopher
Deninger and Yu. I. Manin for their interests on the original lecture of 1991.

2 Multiple Sine Functions

In this section we introduce multiple sine functions, which will play the central role through-
out this paper. We first introduce the multiple Hurwitz zeta function (see Barnes [B]). For
ω1, ..., ωr > 0 and z ∈ C, we put ω = (ω1, ..., ωr) and

ζr(s, z, ω) :=
∑

n≥0

(n · ω + z)−s, (2.1)

where n = (n1, ..., nr) ≥ 0 means ni ≥ 0 and ni ∈ Z for 1 ≤ i ≤ r, and n · ω = n1ω1 +
· · · + nrωr. The series (2.1) absolutely converges for Re(s) > r. It is analytically continued
to s ∈ C as a meromorphic function by the usual method (Barnes [B]) and holomorphic at
s ∈ C − {1, 2, ..., r}. We define the multiple gamma function by

Γr(z, ω) := exp ζ ′
r(0, z, ω) = exp

(

∂

∂s
ζr(s, z, ω)

∣

∣

∣

∣

s=0

)

,

which was originally studied by Barnes [B]. We note that ζ1(s, z, ω) = ω−sζ(s, z
ω
) with ζ(s, z)

the usual Hurwitz zeta function. Hence Γ1(z, ω) = (2π)−
1
2 Γ( z

ω
)ω

z
ω
− 1

2 by Lerch’s formula. We
define the r-ple sine functions Sr(z, ω) and Sr(z) by

Sr(z, ω) := Γr(z, ω)−1Γr(|ω| − z, ω)(−1)r (2.2)

with |ω| = ω1 + · · · + ωr and for r ≥ 2

Sr(z) : = exp

(

zr−1

r − 1

) ∞
∏

n=1

(

Pr

( z

n

)

Pr

(

−z

n

)(−1)r−1
)nr−1

= exp

(

zr−1

r − 1

) ∞
∏′

n=−∞
Pr

( z

n

)nr−1

(2.3)
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with Pr(u) := (1 − u) exp(u + u2

2
+ · · · + ur

r
). For example,

S2(z) = ez

∞
∏

n=1

((

1 − z
n

1 + z
n

)n

e2z

)

,

S3(z) = e
z2

2

∞
∏

n=1

(

(

1 − z2

n2

)n2

ez2

)

.

We put

S1(z) = 2πz
∞
∏

n=1

(

1 − z2

n2

)

= 2 sin(πz).

Taking r = 1 gives the usual sine function:

S1(z, ω) =
2π

Γ( z
ω
)Γ(1 − z

ω
)

= 2 sin(
πz

ω
).

We set
Sr(z) := Sr(z; (1, ..., 1))

for simplicity. Thus
S1(z) = S1(z, 1) = S1(z) = 2 sin(πz).

The double sine function S2(z) was firstly studied by Hölder [H]. Later Shintani [Sh] used
S2(z, (ω1, ω2)) to construct class fields over real quadratic fields. (Unfortunately they did
not name the functions.) To distinguish multiple sine functions, we call Sr(z) the primitive
multiple sine function and Sr(z, ω) the normalized multiple sine function. The intimate
relation between these two kinds of multiple sine functions is the main theme of this paper.

Theorem 2.1 The multiple sine function Sr(z, ω) satisfies the following identities:

(a) For ω = (ω1, ..., ωr) ∈ Rr
+ put ω(i) = (ω1, ..., ωi−1, ωi+1, ..., ωr) ∈ Rr−1

+ , then we have

Sr(z + ωi, ω) = Sr(z, ω)Sr−1(z, ω(i))−1, (2.4)

where we put S0(z, ·) ≡ −1.

(b) For a positive integer N , we have

Sr(Nz, ω) =
∏

0≤ki≤N−1

Sr

(

z +
k · ω
N

, ω

)

, (2.5)

where the product is taken over the vectors k = (k1, ..., kr).
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(c)

∏

0≤ki≤N−1
k 6=0

Sr

(

k · ω
N

, ω

)

= N.

(d)
Sr(0, ω) = 0.

(e) We have for any c > 0 the homogeneity

Sr(cz, cω) = Sr(z, ω).

Proof. Since

ζr(s, z + ωi, ω) =
∑

n1,...,nr≥0
ni≥1

(n1ω1 + · · · + nrωr + z)−s

= ζr(s, z, ω) − ζr−1(s, z, ω(i)),

Γr(z + ωi, ω) = Γr(z, ω)Γr−1(z, ω(i))−1. Hence by |ω| − (z + ωi) = |ω(i)| − z, we have

Sr(z + ωi, ω) = Γr(z + ωi, ω)−1Γr(|ω| − (z + ωi), ω)(−1)r

=
(

Γr(z, ω)Γr−1(z, ω(i))−1
)−1

(Γr(|ω| − z, ω)Γr−1(|ω(i)| − z, ω(i)))(−1)r

= Sr(z, ω)Sr−1(z, ω(i))−1,

which leads to (a).
Next we put

ξr(s, z, ω) := −ζr(s, z, ω) + (−1)rζr(s, |ω| − z, ω), (2.6)

then

Sr(z, ω) = exp(ξ′r(0, z, ω)). (2.7)

Since we need the details of the behavior of ξr(s, z, ω) around s = 0, we describe the integral
representation given by Riemann’s method:

ξr(s, z, ω) = −Γ(1 − s)

2πi

∫

C

ϕ(t, z, ω)(−t)s−1dt,

where

ϕ(t, z, ω) =
−e−zt + (−1)re(z−|ω|)t

(1 − e−ω1t) · · · (1 − e−ωrt)
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and C is the union of C1 : +∞ → +ε > 0, C2 : εeiθ (0 ≤ θ ≤ 2π) and C3 : +ε → +∞. Thus
ξr(s, z, ω) is meromorphic in s ∈ C. Put the coefficients am(z, ω) ∈ C to be

ϕ(t, z, ω) =
∑

m≥−r

am(z, ω)tm

around t = 0. We compute ξr(−n, z, ω) = (−1)nn!an(z, ω) and in particular ξr(0, z, ω) =
a0(z, ω).

To prove (b) we first compute that

ζr(s, Nz, ω) =
∑

ni≥0

(n1ω1 + · · ·+ nrωr + Nz)−s

= N−s
∑

ni≥0

(

n1ω1 + · · ·+ nrωr

N
+ z

)−s

= N−s
∑

0≤ki≤N−1

ζr

(

s, z +
k · ω
N

, ω

)

.

Thus

ξr(s, Nz, ω) = −ζr(s, Nz, ω) + (−1)rζr

(

s, N

( |ω|
N

− z

)

, ω

)

= N−s

(

−
∑

0≤ki≤N−1

ζr

(

s, z +
k · ω
N

, ω

)

+(−1)r
∑

0≤ki≤N−1

ζr

(

s,
|ω|
N

− z +
k · ω
N

, ω

)

)

= N−s
∑

0≤ki≤N−1

ξr

(

s, z +
k · ω
N

, ω

)

.

So we have

ξ′r(0, Nz, ω) =
∑

0≤ki≤N−1

ξ′r

(

0, z +
k · ω
N

, ω

)

−(log N)
∑

0≤ki≤N−1

ξr

(

0, z +
k · ω
N

, ω

)

.

Therefore it suffices to show ξr(0, z, ω) = 0. More generally we can show ξr(−n, z, ω) = 0
for any even integer n ≥ 0. Indeed we see the function ϕ(t, z, ω) is an odd function in t.

Then (c) is deduced from

Sr(Nz, ω)

Sr(z, ω)
=
∏

k6=0

Sr

(

z +
k · ω
N

, ω

)
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with z = 0 substituted (see the proof of (d) below).
The assertion (d) follows from the following calculation:

ζr(s, z, ω) = z−s +
∑

ni≥0
n6=0

(n1ω1 + · · ·+ nrωr + z)−s

= z−s − Γ(1 − s)

2πi

∫

C

(

1

(1 − e−ω1t) · · · (1 − e−ωrt)
− 1

)

e−zt(−t)s−1dt

= z−s + O(1)

as z → 0. Thus ζ ′
r(s, z, ω) = −z−s log z + O(1) and so ζ ′

r(0, z, ω) = − log z + O(1), which
leads to

Γr(z, ω) ∼ 1

cr(ω)z

as z → 0 with some constant cr(ω). We reach the result by substituting z = 0 to (2.2), since
we have Γr(|ω|, ω) 6= 0,∞.

Lastly (e) follows from ξr(s, cz, cω) = c−sξr(s, z, ω) and ξr(0, z, ω) = 0.

Remark 2.2 The relation (c) indicates algebraicity of values at “division points”. For

example let ε = 5+
√

21
2

be the fundamental unit of Q(
√

21) and take r = 2, ω = (1, ε), N = 3.
Then (c) is:

∏′

ki=0,1,2

S2

(

k1 + k2ε

3
, (1, ε)

)

= 3.

In [Sh] Shintani proved a deep result on a similar product:

S2

(

1

3
, (1, ε)

)

S2

(

1 +
ε

3
, (1, ε)

)

S2

(

2 + 2ε

3
, (1, ε)

)

=

√

√

√

√

1+
√

21
2

−
√

3+
√

21
2

2
.

We will deal with values at division points such as

S2

(ω1

2
, (ω1, ω2)

)

= S2

(ω2

2
, (ω1, ω2)

)

=
√

2

in a forthcoming paper [KK].

Remark 2.3 The above properties of the multiple sine functions Sr(z, ω) generalize the
well-known formulas of the usual sine function S1(z, ω) = 2 sin πz

ω
:

2 sin(Nθ) =

N−1
∏

k=0

2 sin

(

θ +
kπ

N

)

and

N−1
∏

k=1

2 sin
kπ

N
= N. (2.8)
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Proposition 2.4 We have an expression:

Sr(z, ω) = eQω(z)z(z − |ω|)(−1)r−1
∏′

n≥0

Pr

(

− z

n · ω

)

Pr

(

z

(n + 1) · ω

)(−1)r−1

with Qω(z) a polynomial with deg Qω ≤ r and 1 := (1, · · · , 1).

Proof. We first compute

∂m

∂zm
ζr(s, z, ω) = (−1)ms(s + 1) · · · (s + m − 1)

∑

n≥0

1

(z + n · ω)s+m
.

It is absolutely convergent for Re(s) > r−m. In particular it converges at s = 0 if m ≥ r+1.
We further compute that

∂m+1

∂zm∂s
ζr(s, z, ω) = (−1)m(msm−1 + · · ·+ (m − 1)!)

∑

n≥0

1

(z + n · ω)s+m

− (−1)ms(s + 1) · · · (s + m − 1)
∑

n≥0

log(z + n · ω)

(z + n · ω)s+m
.

Therefore if m ≥ r + 1, we have

∂m+1

∂zm∂s

∣

∣

∣

∣

s=0

ζr(s, z, ω) = (−1)m(m − 1)!
∑

n≥0

1

(z + n · ω)m

and

∂m+1

∂zm∂s

∣

∣

∣

∣

s=0

ζr(s, |ω| − z, ω) = (m − 1)!
∑

n≥0

1

(|ω| − z + n · ω)m

= (−1)m(m − 1)!
∑

n≥0

1

(z − (n + 1) · ω)m
.

So we have for m ≥ r + 1,

dm

dzm
log Sr(z, ω) =

∂m+1

∂zm∂s

∣

∣

∣

∣

s=0

ξr(s, z, ω)

= (−1)m+1(m − 1)!
∑

n≥0

(

1

(z + n · ω)m
+

(−1)r−1

(z − (n + 1) · ω)m

)

,

which is absolutely convergent for z 6∈ {−n · ω, (n + 1) · ω | n ≥ 0}.
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Next we deduce some properties of Sr(z). We recall that

Sr(z) = exp

(

zr−1

r − 1

) ∞
∏′

n=−∞
Pr

(z

n

)nr−1

, (r ≥ 2)

where the product is taken over all nonzero integers n. We also defined

S1(z) := 2πz

∞
∏′

n=−∞
P1

(z

n

)

= 2πz
∞
∏

n=1

(

1 − z2

n2

)

= 2 sinπz.

Theorem 2.5 For r ≥ 2, we have Sr(0) = 1 and

S ′
r

Sr

(z) = πzr−1 cot(πz).

Consequently it holds that

Sr(z) = exp

(
∫ z

0

πtr−1 cot(πt)dt

)

, (2.9)

where the contour lies in C \ {±1,±2, . . . }.
Proof. We compute

S ′
r

Sr

(z) = zr−2 +

∞
∑

n=1

nr−1

(

1

z − n
+

(−1)r−1

z + n
+

1

n

r
∑

k=1

( z

n

)k−1

(1 + (−1)k+r−1)

)

= zr−2

(

1

z
+

∞
∑

n=1

2z

z2 − n2

)

= zr−1π cot(πz).

Theorem 2.6 For r ≥ 2, the multiple sine function Sr(z) satisfies the following second
order algebraic differential equation:

S ′′
r (z) = (1 − z1−r)S ′

r(z)2Sr(z)−1 + (r − 1)z−1Sr(z) − π2zr−1Sr(z) (2.10)

with Sr(0) = 1 and S ′
r(0) =

{

1 (r = 2)
0 (r ≥ 3)

.

Proof. By the previous theorem we have

d

dz

(

1

πzr−1

S ′
r

Sr

(z)

)

= − π

sin2 πz

= −π(cot2(πz) + 1)

= −π

(

(

1

πzr−1

S ′
r

Sr

(z)

)2

+ 1

)

.
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Remark 2.7 We see (2.10) is analogous to Painlevé’s differential equation of type III. More-
over the multiple cosine function

Cr(z) =
∞
∏

n=−∞
n :odd

Pr

(

z

(n
2
)

)(n
2
)r−1

= Sr(2z)21−rSr(z)−1

satisfies
C′

r

Cr

(z) = −πzr−1 tan(πz)

and the algebraic differential equation (2.10).

The polylogarithm function Lik(x) is defined by

Lik(x) :=

∞
∑

n=1

xn

nk
.

Theorem 2.8 For r ≥ 2, the following representations hold:

Sr(z) = exp

(

− (r − 1)!

(2πi)r−1

r−1
∑

k=0

(2πiz)k

k!
Lir−k(e

−2πiz) +
πi

r
zr +

(r − 1)!

(2πi)r−1
ζ(r)

)

,

(Im(z) < 0) (2.11)

Sr(z) = exp

(

− (r − 1)!

(−2πi)r−1

r−1
∑

k=0

(−2πiz)k

k!
Lir−k(e

2πiz) − πi

r
zr +

(r − 1)!

(−2πi)r−1
ζ(r)

)

,

(Im(z) > 0) (2.12)

Sr(z) = (2 sinπz)zr−1

exp



(−1)
r
2
(r − 1)!

(2π)r−1

∑

1≤k≤r−3
k:odd

(−1)
k−1
2 (2πz)k

k!

∞
∑

n=1

cos(2πnz)

nr−k

−(−1)
r
2
(r − 1)!

(2π)r−1

∑

0≤k≤r−2
k:even

(−1)
k
2 (2πz)k

k!

∞
∑

n=1

sin(2πnz)

nr−k



 ,

(2 ≤ r ∈ 2Z, 0 ≤ z < 1) (2.13)
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Sr(z) = (2 sinπz)zr−1

exp



−(−1)
r−1
2

(r − 1)!

(2π)r−1

∑

0≤k≤r−3
k:even

(−1)
k
2 (2πz)k

k!

∞
∑

n=1

cos(2πnz)

nr−k

−(−1)
r−1
2

(r − 1)!

(2π)r−1

∑

1≤k≤r−2
k:odd

(−1)
k−1
2 (2πz)k

k!

∞
∑

n=1

sin(2πnz)

nr−k

+(−1)
r−1
2

(r − 1)!

(2π)r−1
ζ(r)

)

.

(3 ≤ r ∈ 1 + 2Z, 0 ≤ z < 1) (2.14)

Proof. When Im(z) < 0, by taking the contour t = uz (0 ≤ u ≤ 1) in (2.9) and taking into
account that

cot(πt) = i
1 + e−2iπt

1 − e−2iπt
= i

(

1 + 2
∞
∑

m=1

e−2πimt

)

(Im(t) < 0),

we see

Sr(z) = exp

(

i

∫ z

0

πtr−1

(

1 + 2
∞
∑

m=1

e−2πimt

)

dt

)

.

We reach the conclusion by calculating each term by integrating by parts:

∫ 1

0

tr−1eαtdt = (−1)r−1(r − 1)!
eα

αr

(

r−1
∑

k=0

(−1)k

k!
αk − e−α

)

.

This completes the proof of (2.11). When Im(z) > 0, we deduce (2.12) similarly. For proving
(2.13) and (2.14), it suffices to look at the logarithmic derivatives of the both sides since it
is easy to see that the both sides equal 1 at z = 0. The direct calculation shows that the
logarithmic derivatives of the right hand sides of (2.13) and (2.14) are equal to πzr−1 cot(πz)
by trivial cancellations and the identity

log(2 sinπz) = −
∞
∑

n=1

cos(2πnz)

n
.

Alternatively we can show that

Sr(z) = (2 sinπz)zr−1

exp

(

− (r − 1)!

(2πi)r−1

r−2
∑

k=0

(2πiz)k

k!
Lir−k(e

−2πiz)

+
πi

r
zr − πizr +

πi

2
zr−1 +

(r − 1)!

(2πi)r−1
ζ(r)

)

.

(0 ≤ z < 1) (2.15)
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We will look at the logarithmic derivative of (2.15), since the both sides of (2.15) equal 1 at
z = 0. By (2.9), the left hand side turns to

S ′
r

Sr

(z) = πzr−1 cot(πz). (2.16)

We will show that the logarithmic derivative of the right hand side of (2.15) equals to (2.16).
We have

d

dz
log(right hand side of (2.15))

=
d

dz

(

zr−1 log(2 sin(πz)) − (r − 1)!

(2πi)r−1

r−2
∑

k=0

(2πiz)k

k!
Lir−k(e

−2πiz)

+
πi

r
zr − πizr +

πi

2
zr−1

)

. (2.17)

The first term in the right hand side of (2.17) is equal to

(r − 1)zr−2 log(2 sin(πz)) + πzr−1 cot(πz)

whose second term agrees to (2.16). So it suffices to show

d

dz

(

− (r − 1)!

(2πi)r−1

r−2
∑

k=0

(2πiz)k

k!
Lir−k(e

−2πiz) +
πi

r
zr − πizr +

πi

2
zr−1

)

= −(r − 1)zr−2 log(2 sin(πz)). (2.18)

By the formula

Li′k(x) =
1

x
Lik−1(x) (k ≥ 2),

the former part in the left hand side of (2.18) is equal to

− (r − 1)!

(2πi)r−1

r−2
∑

k=0

(L(k) − L(k + 1)) =
(r − 1)!

(2πi)r−1
L(r − 1), (2.19)

where we put

L(k) =







(2πi)k

(k − 1)!
zk−1Lir−k(e

−2πiz) (1 ≤ k ≤ r − 1)

0 (k = 0).

Then (2.19) is equal to

(r − 1)zr−2Li1(e
−2πiz) = −(r − 1)zr−2 log(1 − e−2πiz)

= −(r − 1)zr−2 log(e−πiz(eπiz − e−πiz))

= −(r − 1)zr−2

(

log(2 sin(πz)) +

(

1

2
− z

)

πi

)

.
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The term −(r − 1)zr−2(1
2
− z)πi cancells with the latter part of the left hand side of (2.18).

This completes the proof of (2.15) and we obtain (2.13) and (2.14) by taking the absolute
value.

Examples 2.9 (a) For r = 2

S2(z) = (2 sinπz)z exp

(

1

2π

∞
∑

n=1

sin(2πnz)

n2

)

.

In particular

S2

(

1

2

)

= 2
1
2 ,

S2

(

1

4

)

= 2
1
8 exp





1

2π

∞
∑

n=1
n:odd

(−1)
n−1

2

n2





= 2
1
8 exp

(

1

2π
L(2, χ−4)

)

,

where χ−4 is the nontrivial Dirichlet character mod 4. Hence

L(2, χ−4) = 2π log

(

S2

(

1

4

)

2−
1
8

)

.

(b) For r = 3

S3(z) = (2 sinπz)z2

exp

(

1

2π2

∞
∑

n=1

cos(2πnz)

n3
+

z

π

∞
∑

n=1

sin(2πnz)

n2
− 1

2π2
ζ(3)

)

.

In particular

S3

(

1

2

)

= 2
1
4 exp

(

1

2π2

∞
∑

n=1

(−1)n − 1

n3

)

= 2
1
4 exp

(

− 1

π2

∑

n:odd

1

n3

)

= 2
1
4 exp

(

− 7

8π2
ζ(3)

)

.

Hence

ζ(3) =
8π2

7
log

(

S3

(

1

2

)−1

2
1
4

)

.
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Theorem 2.10 The following identities hold:

(a)

Sr(z + 1) =
S ′

r(1)

2π

r
∏

k=1

Sk(z)(
r−1
k−1).

(b)

Sr(Nz) = Ar(N)

(

Sr(z) · · · Sr

(

z +
N − 1

N

))Nr−1 r−1
∏

k=1

N−1
∏

a=1

Sk

(

z +
a

n

)(−1)r−k(r−1
k−1)ar−kNk−1

with

Ar(N)−1 =

(

Sr

(

1

N

)

· · · Sr

(

N − 1

N

))Nr−1 r−1
∏

k=1

N−1
∏

a=1

Sk

(a

n

)(−1)r−k(r−1
k−1)ar−kNk−1

.

Proof. The logarithmic derivatives of the both sides of (a) coincide by Theorem 2.5, since

(z + 1)r−1 =
r−1
∑

k=1

(

r − 1

k − 1

)

zk−1.

Calculating the both sides (divided by z) at z = 0 leads to (a).
For proving (b) we first appeal to (2.9) to obtain

d

dz
log Sr(Nz) = Nπ(Nz)r−1 cot(πNz).

By the well-known formula (2.8), we see that

N cot(πNz) =
1

π

d

dz
logS1(Nz) =

N−1
∑

a=0

1

π

d

dz
log S1

(

z +
a

n

)

=

N−1
∑

a=0

cot π
(

z +
a

n

)

.

Therefore we have

d

dz
logSr(Nz) = N r−1πzr−1

N−1
∑

a=0

cotπ
(

z +
a

N

)

.

Here we note that

zr−1 =
(

z +
a

N

)r−1

+

r−1
∑

k=1

(

r − 1

k − 1

)

(

− a

N

)r−k (

z +
a

N

)k−1

.
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Thus

d

dz
log Sr(Nz)

= N r−1π

N−1
∑

a=0

(

(

z +
a

N

)r−1

+

r−1
∑

k=1

(

r − 1

k − 1

)

(

− a

N

)r−k (

z +
a

N

)k−1
)

cot π
(

z +
a

N

)

= N r−1
N−1
∑

a=0

d

dz

(

log Sr

(

z +
a

N

)

+

r−1
∑

k=1

(−1)r−k

(

r − 1

k − 1

)

( a

N

)r−k

logSk

(

z +
a

N

)

)

,

which leads to the result.

Remark 2.11 The constant S ′
r(1) appearing in (a) is completely determined in Lemma 3.1.

Examples 2.12

S ′
2(1) = −2π ; S2(z + 1) = −S2(z)S1(z),

S ′
3(1) = −2π ; S3(z + 1) = −S3(z)S2(z)2S1(z),

S ′
4(1) = −2π exp(−6ζ ′(−2)) ; S4(z + 1) = − exp(−6ζ ′(−2))S4(z)S3(z)3S2(z)3S1(z),

S ′
5(1) = −2π exp(−12ζ ′(−2)) ; S5(z + 1) = − exp(−12ζ ′(−2))S5(z)S4(z)4S3(z)6S2(z)4S1(z).

Lemma 2.13 Let c(r, k) ∈ Z be defined by

c(r, k) =
1

k

k
∑

l=1

(−1)l−1

(

k

l

)

lr.

Then c(r, k) satisfies that

(−x)r−1 =
r
∑

k=1

c(r, k)

(

x + k − 1

k − 1

)

for an indeterminate x. In particular c(r, r) = (−1)r−1(r − 1)!.

Proof. Let S(n, k) be the Stirling number of the second kind [A] (13.3.16), which is the
coefficient in the expansion

xn =
n
∑

k=0

S(n, k)(x)k,

where (x)k = x(x−1) · · · (x−k +1). We will compute ext in two ways. First we deduce that

ext =
(

1 + (et − 1)
)x

=

∞
∑

k=0

(x)k

k!
(et − 1)k.

15



Secondly we calculate that

ext =

∞
∑

n=0

(

n
∑

k=0

S(n, k)(x)k

)

tn

n!
=

∞
∑

k=0

(

∑

n≥k

S(n, k)

n!
tn

)

(x)k.

Then we have

∑

n≥k

S(n, k)

n!
tn =

(et − 1)k

k!
=

1

k!

k
∑

l=0

(−1)k−letl

(

k

l

)

=
1

k!

k
∑

l=0

(−1)k−l

(

k

l

) ∞
∑

n=0

(tl)n

n!
.

Therefore

S(n, k) =
1

k!

k
∑

l=0

(−1)k−l

(

k

l

)

ln =
c(n, k)(−1)k−1

(k − 1)!
.

Thus

xn =

n
∑

k=0

c(n, k)(−1)k−1

(k − 1)!
(x)k,

hence

xn−1 =

n
∑

k=0

c(n, k)

(−x + k − 1

k − 1

)

.

Now, the fact c(n, n) = (−1)n−1(n − 1)! is seen from comparing the coefficients of xn−1.
We recall that

Sr(z) = Sr(z, (1, · · · , 1)) = Γr(z)−1Γr(r − z)(−1)r . (2.20)

Its relation to Sr(z) is given by the following theorem (the constant Cr will be determined
in Theorem 3.5):

Theorem 2.14 For r = 1, 2, 3, ..., there exists a constant Cr such that

Sr(z) = Cr

r
∏

k=1

Sk(z)c(r,k). (2.21)

Proof. We remark that r = 1 case holds with C1 = 1 since

S1(z) = S1(z) = 2 sin(πz)

and c(1, 1) = 1. Hereafter we assume r ≥ 2. We first deduce that

Sr(z) = eP (z)

r
∏

k=1

Sk(z)c(r,k) (2.22)
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for some polynomial P (z) such that deg P ≤ r. It suffices to show that

dr+1

dzr+1
log Sr(z) =

dr+1

dzr+1
log

(

r
∏

k=1

Sk(z)c(r,k)

)

. (2.23)

The left hand side is equal to

dr+1

dzr+1
log

(

e
zr−1

r−1

∞
∏′

n=−∞
Pr

( z

n

)nr−1
)

=
dr+1

dzr+1

(

zr−1

r − 1
+

∞
∑′

n=−∞
nr−1

(

log
(

1 − z

n

)

+
z

n
+

1

2

( z

n

)2

+ · · ·+ 1

r

( z

n

)r
)

)

= (−1)rr!

∞
∑′

n=−∞

nr−1

(z − n)r+1
. (2.24)

Then as in the proof of Proposition 2.4, we have

dr+1

dzr+1
log Sr(z) = (−1)rr!

∞
∑

n=0

rHn

(

1

(z + n)r+1
+

(−1)r−1

(z − n − r)r+1

)

,

where rHn =
(

n+r−1
r−1

)

. Therefore

r
∑

k=1

c(r, k)
dr+1

dzr+1
log Sk(z) = (−1)rr!

( ∞
∑

n=0

(

r
∑

k=1

c(r, k) kHn

)

1

(z + n)r+1

+

∞
∑

n=0

(

r
∑

k=1

c(r, k) kHn(−1)k−1

)

1

(z − n − k)r+1

)

.

The first sum over k is equal to (−n)r−1 = (−1)r−1nr−1 by the previous lemma. In the
second sum we replace n by n − k to get

∞
∑

n=0

(

r
∑

k=1

c(r, k) kHn−k(−1)k−1

)

1

(z − n)r+1
.

Here the sum over k is equal to nr−1, because

(−1)k−1
kHn−k = (−1)k−1

(

n − 1

k − 1

)

= (−1)k−1 (n − 1) · · · (n − k + 1)

(k − 1)!

=
(−n + k − 1) · · · (−n + 1)

(k − 1)!
=

(−n + k − 1

k − 1

)

= kH−n.
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Hence

r
∑

k=1

c(r, k)
dr+1

dzr+1
log Sk(z) = (−1)rr!

( ∞
∑

n=0

(−1)r−1nr−1

(z + n)r+1
+

∞
∑

n=0

nr−1

(z − n)r+1

)

=
dr+1

dzr+1
log Sr(z)

by (2.24), and we reach (2.23). Thus we obtain (2.22).
Next we prove by induction on r that the polynomial P (z) is a constant. It holds by

(2.22) that

Sr(z + 1) = eP (z+1)
r
∏

k=1

Sk(z + 1)c(r,k). (2.25)

The left hand side is computed by Theorem 2.10 (a) as

c′Sr(z)Sr−1(z)r−1 · · · Sk(z)(
r−1
k−1) · · · S1(z)

for some constant c′, which equals by (2.22) and by the assumption of induction for S1(z), ...,Sr−1(z)

c′′
(

eP (z)Sr(z)c(r,r) · · ·S1(z)c(r,1)
) (

Sr−1(z)c(r−1,r−1) · · ·S1(z)c(r−1,1)
)r−1 · · ·S1(z)c(1,1)

= c′′eP (z)Sr(z)a(r)Sr−1(z)a(r−1) · · ·S1(z)a(1)

with

a(k) =
r
∑

l=k

(

r − 1

l − 1

)

c(l, k).

The right hand side of (2.25) is by (2.4) equal to

eP (z+1)

r
∏

k=1

(

Sk(z)Sk−1(z)−1
)c(r,k)

= −eP (z+1)Sr(z)c(r,r)Sr−1(z)c(r,r−1)−c(r,r) · · ·S1(z)c(r,1)−c(r,2)

since c(r, r) = 1 and S0(x, ·) = −1. Thus we have by comparing the both sides of (2.25)

c′′eP (z)Sr(z)a(r) · · ·S1(z)a(1) = −eP (z+1)Sr(z)c(r,r)Sr−1(z)c(r,r−1)−c(r,r) · · ·S1(z)c(r,1)−c(r,2).

So there exist b(k) ∈ Z such that

−c′′eP (z)−P (z+1) =

r
∏

k=1

Sk(z)b(k). (2.26)

18



We can compare the order of zeros at z = −n (n = 1, 2, 3, ...) of both sides of (2.26) by using
the identity

Γk(z)−1 = eQk(z)z
∞
∏

n=1

Pk

(

−z

n

)

kHn

with some Qk(z) ∈ C[z] such that deg Qk ≤ k, which can be proved in exactly the same way
as in the proof of Proposition 2.4 (see the proof of Theorem 3.7 below).

Thus we have for n = 1, 2, 3, ... that

r
∑

k=1

b(k) kHn =
r
∑

k=1

b(k)

(

n + k − 1

k − 1

)

= 0. (2.27)

The left hand side of (2.27) is a polynomial in n whose degree is less than r. Therefore we
have b(k) = 0 for k = 1, 2, ..., r. Thus c′′eP (z)−P (z+1) = 1, and it is necessary that

P (z) = a + bz (2.28)

for some constants a and b with b ∈ 2π
√
−1Z.

It remains to show that b = 0. We look at the identity

Sr(2z) = eP (2z)Sr(2z)c(r,r) · · ·S1(2z)c(r,1). (2.29)

The left hand side of (2.29) is equal to by Theorem 2.10 (b) (N = 2)

Sr(2z) = c′′′
(

Sr(z)Sr

(

z +
1

2

))2r−1

× Sr−1

(

z +
1

2

)−(r−1
r−2)2r−2

Sr−2

(

z +
1

2

)(r−1
r−3)2r−3

· · · S1

(

z +
1

2

)(−1)r−1

.

So, by the assumption of the induction

Sr(2z) = c′′′′e2r−1(P (z)+P(z+ 1
2))

r
∏

k=1

Sk(z)c(k)Sk

(

z +
1

2

)d(k)

(2.30)

for some c(k), d(k) ∈ Z. On the other hand the right hand side of (2.29) is equal to

eP (2z)

(

Sr(z)Sr

(

z +
1

2

)(r
1)
· · ·Sr

(

z +
r

2

)(r
r)
)c(r,r)

×
(

Sr−1(z) · · ·Sr−1

(

z +
r − 1

2

)(r−1
r−1)
)c(r,r−1)

· · ·
(

S1(z)S1

(

z +
1

2

))c(r,1)

= eP (2z)

r
∏

k=1

Sk(z)c′(k)Sk

(

z +
1

2

)d′(k)

(2.31)
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for some c′(k), d′(k) ∈ Z, where we used the formulas (2.4) and (2.5) for ω = (1, ..., 1):

Sr(z + 1) = Sr(z)Sr−1(z)−1

and

Sr(2z) =

r
∏

k=0

Sr

(

z +
k

2

)(r
k)

.

By comparing the order of zeros at z = −n and z = −n − 1
2

of (2.30) and (2.31) for
n = 1, 2, 3, ..., we have c(k) = c′(k) and d(k) = d′(k) for k = 1, 2, ..., r. Hence

c′′′′e2r−1(P (z)+P(z+ 1
2)) = eP (2z).

Taking (2.28) into account, it follows that c′′′′e2rbz+2ra+2r−2b = e2bz+a for all z ∈ C. Hence
b = 0 by r ≥ 2.

The following differential equation is crucial for later use.

Theorem 2.15

S ′
r

Sr

(z) = (−1)r−1

(

z − 1

r − 1

)

π cot(πz). (2.32)

Proof. The logarithmic derivative of (2.21) shows

S ′
r

Sr

(z) =

r
∑

k=1

c(r, k)
S ′

k

Sk

(z).

So by inverting it holds for some c′(r, k) ∈ Q that

S ′
r

Sr

(z) =

r
∑

k=1

c′(r, k)
S ′

k

Sk

(z).

Hence by Proposition 2.5 it follows that

S ′
r

Sr

(z) =

(

r
∑

k=1

c′(r, k)zk−1

)

π cot(πz).

Thus it suffices to prove that

r
∑

k=1

c′(r, k)zk−1 = (−1)r−1

(

z − 1

r − 1

)

. (2.33)
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By inverting (2.21) we have for some constant C ′
r that

Sr(z) = C ′
r

r
∏

k=1

Sk(z)c′(r,k).

Let N be the least common multiple of the denominators of c′(r, k). We will compare the
order of zeros of the both sides of

Sr(z)N = C ′
r
N

r
∏

k=1

Sk(z)Nc′(r,k)

at z = −m for m = 1, 2, 3, .... For the left hand side it is equal to the order of poles of
Γr(z)N at z = −m, which is N rHm. On the other hand for the right hand side it is equal

to N
r
∑

k=1

c′(r, k)(−m)k−1. Hence

r
∑

k=1

c′(r, k)(−m)k−1 = rHm =
(m + r − 1) · · · (m + 1)

(r − 1)!

for m = 1, 2, 3, .... Therefore as a polynomial in x, it holds that
r
∑

k=1

c′(r, k)xk−1 =
(−x + r − 1) · · · (−x + 1)

(r − 1)!
=

(−1)r−1(x − 1) · · · (x − r + 1)

(r − 1)!

= (−1)r−1

(

x − 1

r − 1

)

.

3 Calculations of Constants and Special Values

In this section we determine the constants Cr for r ≥ 2. As its application we obtain an
expression of ζ(3) in terms of the triple sine function.

Lemma 3.1

S ′
r(1) = −2π exp



−2
∑

1<l<r
odd

(

r − 1

l − 1

)

ζ ′(1 − l)



 .

Proof. The case r = 1 is easily seen from S ′
1(1) = −2π. Suppose that r ≥ 2. Then by the

expressions (2.13) and (2.14) we have

S ′
r(1) =































−2π exp



−(r − 1)!

(2π)r−1

∑

1≤k≤r−3
odd

(2π)k(−1)
k−r+1

2

k!
ζ(r − k)



 (r ∈ 2Z)

−2π exp



−(r − 1)!

(2π)r−1

∑

2≤k≤r−3
even

(2π)k(−1)
k−r+1

2

k!
ζ(r − k)



 (r ∈ 1 + 2Z, r ≥ 3)

,
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since the function f(z) = (2 sinπz)zr−1
satisfies f(1) = 0 and

f ′(1) = lim
z→1

(2 sinπz)zr−1−12 sinπz

z − 1
= −2π.

Putting r − k = l, we see the both cases equal

S ′
r(1) = −2π exp



−(r − 1)!
∑

1<l<r
odd

(−1)
l−1
2

(r − l)!(2π)l−1
ζ(l)





= −2π exp



−(r − 1)!
∑

1<l<r
odd

2

(r − l)!(l − 1)!
ζ ′(1 − l)





= −2π exp



−2
∑

1<l<r
odd

(

r − 1

l − 1

)

ζ ′(1 − l)



 ,

where we used

ζ(l) =
(2π)l−12(−1)

l−1
2

(l − 1)!
ζ ′(1 − l)

coming from the functional equation for ζ(s).

Lemma 3.2 Let a(r, k) ∈ Q satisfy

(

X + r − 2

r − 1

)

=

r−1
∑

k=1

a(r, k)Xk.

Then we have

Sr(1) = exp



−2
∑

2≤k≤r−1
even

a(r, k)ζ ′(−k)



 = exp



−2
∑

3≤l≤r
odd

a(r, l − 1)ζ ′(1 − l)



 . (3.1)

Proof. Since

ζr(s, z) = ζr(s, z, (1, ..., 1)) =
∑

n1,...,nr

(n1 + n2 + · · ·+ nr + z)−s =

∞
∑

n=0

rHn(n + z)−s,

we see

ζr(s, 1) =

∞
∑

n=0

rHn(n + 1)−s =

∞
∑

n=1

rHn−1n
−s =

∞
∑

n=1

(

r−1
∑

k=1

a(r, k)nk

)

n−s

=

r−1
∑

k=1

a(r, k)ζ(s − k).
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Hence ζ ′
r(s, 1) =

r−1
∑

k=1

a(r, k)ζ ′(s − k) and

Γr(1) = exp(ζ ′
r(0, z))|z=1 = exp

(

r−1
∑

k=1

a(r, k)ζ ′(−k)

)

. (3.2)

On the other hand

ζr(s, r − 1) =

∞
∑

n=0

rHn(n + r − 1)−s =

∞
∑

n=1

rHn−r+1n
−s.

Since rHn−r+1 = n(n−1)···(n−r+2)
(r−1)!

= (−1)r−1
rH−n−1, we have

ζr(s, r − 1) = (−1)r−1

∞
∑

n=1

rH−n−1n
−s = (−1)r−1

∞
∑

n=1

(

r−1
∑

k=1

a(r, k)(−n)k

)

n−s

= (−1)r−1

r−1
∑

k=1

a(r, k)(−1)kζ(s − k).

Therefore

Γr(r − 1) = exp

(

(−1)r−1

r−1
∑

k=1

a(r, k)(−1)kζ ′(−k)

)

. (3.3)

The lemma follows from (3.2), (3.3) and Sr(1) = Γr(1)−1Γr(r − 1)(−1)r .

Remark 3.3 The number a(r, k) is a shifted version of the Stirling number of the first kind
s(r, k) [A] (13.3.15):

(X)r =

∞
∑

k=0

s(r, k)Xk.

Lemma 3.4
r
∑

k=l

c(r, k)a(r, l − 1) = (−1)l−1

(

r − 1

l − 1

)

.

Proof. We have

(−1)r−1(X − 1)r−1 =
r
∑

k=1

c(r, k)

(

X + k − 2

k − 1

)

=

r
∑

k=1

c(r, k)

(

k
∑

l=1

a(k, l − 1)X l−1

)

=

r
∑

l=1

(

r
∑

k=l

c(r, k)a(k, l − 1)

)

X l−1.
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Comparing the coefficients of X l−1 for the both sides leads to the result.

Theorem 3.5 The constant Cr in Theorem 2.14 is given by

Cr =

{

1 (r ∈ 2Z)
e2ζ′(1−r) (r ∈ 1 + 2Z, r ≥ 3)

.

Proof. Since S1(1) = 0 and S ′
1(1) = −2π, we have from (2.21) that

S ′
r(1) = −2πCr

r
∏

k=2

Sk(1)c(r,k).

We will compute

Cr = −S ′
r(1)

2π

r
∏

k=2

Sk(1)−c(r,k).

It equals

exp



−2
∑

1<l<r
odd

(

r − 1

l − 1

)

ζ ′(1 − l) + 2
∑

1<l≤r
odd

(

r
∑

k=l

c(r, k)a(r, l − 1)

)

ζ ′(1 − l)



 , (3.4)

since Lemma 3.2 gives that

Sk(1) = exp



−2
∑

1<l≤k
odd

a(k, l − 1)ζ ′(1 − l)



 .

The sum over k in (3.4) is computed as
(

r−1
k−1

)

by Lemma 3.4 since l are odd. The theorem
follows.

Examples 3.6 We have

S1(z) = S1(z)

S2(z) = S2(z)−1S1(z)

S3(z) = e2ζ′(−2)S3(z)2S2(z)−3S1(z)

S4(z) = S4(z)−6S3(z)12S2(z)−7S1(z)

and thus

S1(z) = S1(z)

S2(z) = S2(z)−1S1(z)

S3(z) = e−ζ′(−2)S3(z)
1
2S2(z)−

3
2S1(z)

S4(z) = e−2ζ′(−2)S4(z)−
1
6S3(z)S2(z)−

11
6 S1(z).
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Theorem 3.7 It holds that

Sr(z) = Cr

r
∏

k=1

Γk(z)−c(r,k)

(

r
∏

k=1

Γk(−z)−c(r,k)

)(−1)r−1

.

Proof. By substituting (2.20) to (2.21), we have

Sr(z) = Cr

r
∏

k=1

Γk(z)−c(r,k)

r
∏

k=1

Γk(k − z)(−1)kc(r,k). (3.5)

The formula Γk(k − z) = Γk(k − 1 − z)Γk−1(k − 1 − z)−1 gives that

Γk(k − z) =

k
∏

j=0

Γj(−z)a(k,j)

with a(k, j) = (−1)k−j
(

k

j

)

∈ Z. We note a(k, 0) = (−1)k. Thus we can put b(r, k) ∈ Z so
that

r
∏

k=1

Γk(k − z)(−1)kc(r,k) =

(

r
∏

k=1

Γk(−z)−b(r,k)

)(−1)r−1

.

Therefore (3.5) becomes

Sr(z) = Cr

r
∏

k=1

Γk(z)−c(r,k)

(

r
∏

k=1

Γk(−z)−b(r,k)

)(−1)r−1

. (3.6)

To show that b(r, k) = c(r, k), we compute the order of zeros at z = n (n = 1, 2, 3, ...) for
the both sides of (3.6). Some direct calculations show that

∂k+2

∂zk+1∂s
ζk(s, z, ω)

∣

∣

∣

∣

s=0

=
∂k+1

∂zk+1
log

(

z
∏′

n≥0

Pk

(

− z

n1ω1 + · · ·nkωk

)

)

,

where n ≥ 0 means the same as in (2.1). Thus we have

Γk(z, ω)−1 = eQk(z,ω)z
∏′

n≥0

Pk

(

− z

n · ω

)

with some polynomial Qk whose degree in z is not greater than k. When ω = (1, ..., 1) it
becomes

Γk(z)−1 = eQk(z)z
∞
∏

n=1

Pk

(

−z

n

)

kHn
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with deg Qk ≤ k. Hence the order of zeros at z = n (n = 1, 2, 3, ...) of (3.6) is

nr−1 =

r
∑

k=1

(−1)r−1b(r, k) kHn.

As this is valid for n = 1, 2, 3, ..., we deduce that b(r, k) = c(r, k).

Theorem 3.8 (a)

ζ(3) =
8π2

7
log

(

S3

(

1

2

)−1

2
1
4

)

. (3.7)

(b)

ζ(3) =
16π2

3
log

(

S3

(

1

2

)−1

2
3
8

)

. (3.8)

(c)

ζ(3) = 4π2 log(S3(1)). (3.9)

Proof. The assertion (a) is already proved in Example 2.9(b). For proving (b) we take
r = 2 in (2.21) with Theorem 3.5 and have S2(z) = S2(z)−1S1(z), from which it follows that
S2(z) = S2(z)−1S1(z). Putting r = 3 in (2.21) with Theorem 3.5 we have

S3(z) = e2ζ′(−2)S3(z)2S2(z)−3S1(z),

or S3(z) = e−ζ′(−2)S3(z)
1
2S2(z)−

3
2S1(z). Substituting z = 1

2
gives

S3

(

1

2

)

= e−ζ′(−2)S3

(

1

2

)
1
2

2
1
4 ,

where we used S2(
1
2
) =

√
2 in Example 2.9(a), which follows from

S2(z) = (2 sinπz)z exp

(

1

2π

∞
∑

n=1

sin(2πnz)

n2

)

for 0 ≤ z < 1. So using −ζ ′(−2) = 1
4π2 ζ(3) we have (3.8) from (3.7). Finally (c) follows from

(3.1) for r = 3, which turns to S3(1) = exp(−ζ ′(−2)) = exp( 1
4π2 ζ(3)).

Expectation 3.9 We expect Sr(Q) ⊂ Q ∪ {∞} and Sr(Q) ⊂ Q ∪ {∞}. These would

imply the transcendency of
ζ(3)

π2
and ζ(3) by (3.7), (3.8) or (3.9) (cf. [KK] and [KW]).

Here we notice only that S2(
1
2
) =

√
2 as in Example 2.9(a) and S2(

1
2
) =

√
2 by S2(

1
2
) =

S2(
1
2
)−1S1(

1
2
) =

√
2. Similarly S2(

m
2
) = (−1)[ m+1

4
]2

m
2 and S2(

m
2
) = (−1)[ m

4
]21−m

2 for odd

integers m: the former follows from S2(
1
2
) =

√
2 using S2(z + 1) = −S2(z)S1(z) listed in

Examples 2.12, and the latter is obtained by S2(
m
2
) = S2(

m
2
)−1S1(

m
2
). (See Remark 2.2 also.)
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4 Plancherel Measures

The Plancherel measure µM(t) and the constant ρ0 > 0 in the functional equation (1.6) are
calculated by Miatello[Mi] as follows:

(0) G = SO(1, 2n− 1) (⇔ dimM : odd)

ρ0 = n − 1,

µM(it) : polynomial.

(1) G = SO(1, 2n)

dimM = 2n,

ρ0 = n − 1

2
,

µM(it) = (−1)nPM(t)π tan(πt),

PM(t) =
2

(2n − 1)!
t

n−1
∏

k=1

(

t2 −
(

k − 1

2

)2
)

.

(2) G = SU(1, 2n − 1)

dimM = 4n − 2,

ρ0 = n − 1

2
,

µM(it) = −PM (t)π tan(πt),

PM(t) =
2

(2n − 1)!(2n − 2)!
t

n−1
∏

k=1

(

t2 −
(

k − 1

2

)2
)

.

(3) G = SU(1, 2n)

dimM = 4n,

ρ0 = n,

µM(it) = −PM (t)π cot(πt),

PM(t) =
2

(2n)!(2n − 1)!
t3

n−1
∏

k=1

(t2 − k2)2.
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(4) G = Sp(1, n)

ρ0 = n +
1

2
,

dimM = 4n,

µM(it) = PM(t)π tan(πt),

PM(t) =
2

(2n + 1)!(2n − 1)!
t

(

t2 −
(

n − 1

2

)2
)

n−1
∏

k=1

(

t2 −
(

k − 1

2

)2
)2

.

(5) G = F4

ρ0 =
11

2
,

dimM = 16,

µM(it) = PM(t)π tan(πt),

PM(t) =
2

11!4 · 5 · 6 · 7t

(

t2 − 1

4

)2(

t2 − 9

4

)2(

t2 − 25

4

)(

t2 − 49

4

)(

t2 − 81

4

)

.

In this section we will give a new expression of the Plancherel measures, which suggests the
Betti type interpretation for the coefficients. In what follows we omit the case (0) since the
gamma factor is “trivial” corresponding to the nonexistence of discrete series. We use the
following combinatorial results:

Lemma 4.1 For integers n and m we have:

2nHm +2n Hm−1 =
(2m + 2n − 1)(m + 1) · · · (m + 2n − 2)

(2n − 1)!
(4.1)

= mult(m(m + n), ∆S2n), (4.2)

n
∑

k=0

(

n

k

)2

2nHm−k =
(2m + n)(m + 1)2 · · · (m + n − 1)2

n!(n − 1)!
(4.3)

= mult(m(m + n), ∆Pn� ), (4.4)

2n−1
∑

k=0

1

2n

(

2n

k

)(

2n

k + 1

)

4nHm−k

=
(2m + 2n + 1)(m + 1)((m + 2) · · · (m + 2n − 1))2(m + 2n)

(2n + 1)!(2n − 1)!
(4.5)

= mult(m(m + 2n + 1), ∆Pn
H
), (4.6)
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16Hm + 10 16Hm−1 + 28 16Hm−2 + 28 16Hm−3 + 10 16Hm−4 +16 Hm−5

= (2m+1)(m+1)(m+2)(m+3)(m+4)2 (m+5)2(m+6)2(m+7)2(m+8)(m+9)(m+10)
11!·4·5·6·7 (4.7)

= mult(m(m + 11), ∆P2
O
). (4.8)

Proof. The identities (4.2), (4.4) are due to Cartan [C]. More generally the results of
Cahn-Wolf [CW] give (4.2), (4.4), (4.6), (4.8). These are considered as real analytic analogs
of the “Hirzebruch proportionality principle”.

It is easy to see (4.1). We compute (4.3) as follows:

n
∑

k=0

(

n

k

)2

2nHm−k =

n
∑

k=0

(

n

k

)2(
m − 1 + 2n − k

2n − 1

)

=
∑

k≥0

(

n

k

)2(
m − 1 + n + k

2n − 1

)

=
∑

k≥0

(

n

k

)2
∑

j≥0

(

k

j

)(

m − 1 + n

2n − 1 − j

)

,

where we used the Vandermond convolution
∑

k≥0

(

m

k

)(

n

l−k

)

=
(

m+n

l

)

. By changing the order
of the sums it equals

∑

j≥0

(

m − 1 + n

2n − 1 − j

)

∑

k≥0

(

n

k

)2(
k

j

)

=
∑

j≥0

(

m − 1 + n

2n − 1 − j

)(

n

j

)

∑

k≥0

(

n

k

)(

n − j

n − k

)

=
∑

j≥0

(

m − 1 + n

2n − 1 − j

)(

n

j

)(

2n − j

n

)

=
∑

j≥0

(

2n

m

(

m − 1 + n

m − 1

)(

m

n − j

)(

n

j

)

− n

m

(

m − 1 + n

m − 1

)(

m

n − j

)(

n − 1

j − 1

))

=
2n

m

(

m − 1 + n

m − 1

)(

m + n

n

)

− n

m

(

m − 1 + n

m − 1

)(

m + n − 1

n − 1

)

=
2m + n

n

(

m − 1 + n

n − 1

)2

.

Here we reached the right hand side of (4.3).
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The identity (4.5) is proved as follows:

2n−1
∑

k=0

1

2n

(

2n

k

)(

2n

k + 1

)

4nHm−k

=
2n−1
∑

k=0

1

2n

(

2n

k

)(

2n

k + 1

)(

4n + m − k − 1

4n − 1

)

=
2n−1
∑

k=0

1

2n

(

2n

k + 1

)(

2n

k

)(

2n + m + k

4n − 1

)

(k 7→ 2n − 1 − k)

=
1

2n

∑

k≥0

(

2n

k + 1

)(

2n

k

)

∑

j≥0

(

k

j

)(

2n + m

4n − 1 − j

)

=
1

2n

∑

j≥0

(

2n + m

4n − 1 − j

)

∑

k≥0

(

2n

k + 1

)(

2n

k

)(

k

j

)

=
1

2n

∑

j≥0

(

2n + m

4n − 1 − j

)

∑

k≥0

(

2n

k + 1

)(

2n

j

)(

2n − j

2n − k

)

=
1

2n

∑

j≥0

(

2n + m

4n − 1 − j

)(

2n

j

)(

4n − j

2n + 1

)

=
1

2n

∑

j≥0

(

4n

m

(

2n + m

2n + 1

)(

m

2n − 1 − j

)(

2n

j

)

−2n

m

(

2n + m

2n + 1

)(

m

2n − 1 − j

)(

2n − 1

j − 1

))

=
2

m

(

2n + m

2n + 1

)(

m + 2n

2n − 1

)

− 1

m

(

2n + m

2n + 1

)(

m + 2n − 1

2n − 2

)

.

This is equal to the right hand side of (4.5).
We can verify (4.7) by direct calculations.

Theorem 4.2

PM(t + ρ0) =















































2nHt + 2nHt G = SO(1, 2n)
n
∑

k=0

(

n

k

)2

2nHt−k G = SU(1, n)

2n−1
∑

k=0

1

2n

(

2n

k

)(

2n

k + 1

)

4nHt−k G = Sp(1, n)

16Ht + 10 16Ht−1 + 28 16Ht−2

+28 16Ht−3 + 10 16Ht−4 +16 Ht−5 G = F4.
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Proof. Since we see PM(m+ρ0) = mult(m(m+2ρ0), ∆M ′), the theorem holds as polynomials
in t.

The following result represents that Plancherel measures are sums of logarithmic deriva-
tives of multiple sine functions.

Theorem 4.3

exp

(
∫ s−ρ0

0

µM(it)dt

)(−1)(dim M)/2

=































S2n(s)S2n(s + 1) G = SO(1, 2n)
n
∏

k=0

S2n(s + k)(
n
k)

2

G = SU(1, n)

2n−1
∏

k=0

S4n(s + k)
1
2n(2n

k )( 2n
k+1) G = Sp(1, n)

S16(s)S16(s + 1)10S16(s + 2)28S16(s + 3)28S16(s + 4)10S16(s + 5) G = F4.

(4.9)

Proof. We first prove the case of SO(1, 2n). When s = ρ0 = n− 1
2
, the left hand side clearly

equals to 1. The right hand side is computed as

S2n

(

n − 1

2

)

S2n

(

n +
1

2

)

=
Γ2n

(

n + 1
2

)

Γ2n

(

n − 1
2

)

Γ2n

(

n − 1
2

)

Γ2n

(

n + 1
2

) = 1.

So it suffices to compare the logarithmic derivative for the both sides of (4.9). For the right
hand side we have

S ′
2n

S2n

(s) +
S ′

2n

S2n

(s + 1) = −
((

s − 1

2n − 1

)

+

(

s

2n − 1

))

π cot(πs).

On the other hand the logarithmic derivative of the left hand side of (4.9) is equal to
−PM(s−n+1

2
)π cot(πs). Therefore all we have to prove is that PM(s−n+1

2
) =

(

s−1
2n−1

)

+
(

s

2n−1

)

.
We compute

PM

(

s − n +
1

2

)

=
2

(2n − 1)!

(

s − n +
1

2

) n−1
∏

k=1

(

(

s − n +
1

2

)2

−
(

k − 1

2

)2
)

= (2s − 2n + 1)
(s − 1)(s − 2) · · · (s − 2n + 2)

(2n − 1)!

=
s(s − 1) · · · (s − 2n + 2)

(2n − 1)!
+

(s − 1)(s − 2) · · · (s − 2n + 1)

(2n − 1)!

=

(

s

2n − 1

)

+

(

s − 1

2n − 1

)
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G K G′ M ′

SO(1, n) SO(n) SO(1 + n) Sn

SU(1, n) SU(n) SU(1 + n) Pn�

Sp(1, n) Sp(n) Sp(1 + n) Pn
H

F4 Spin(9) F ′
4 P2

O

Table 1: Compact Duals

as desired. The other cases are similarly proved by our using Lemma 4.1 and Theorem 4.2.
Let M ′ = G′/K be the compact dual symmetric spaces which are given in Table 1.
We put

ζ

(

s, z,
√

∆M ′ + ρ2
0

)

:=
∑

λ

(λ + z)−s (4.10)

where the sum is taken over all eigenvalues λ of
√

∆M ′ + ρ2
0 with ∆M ′ being the Laplacian

on M ′.

Theorem 4.4

ζ

(

s, z − ρ0,
√

∆M ′ + ρ2
0

)

=















































ζ2n(s, z) + ζ2n(s, z + 1) G = SO(1, 2n)
n
∑

k=0

(

n

k

)2

ζ2n(s, z + k) G = SU(1, n)

2n−1
∑

k=0

1

2n

(

2n

k

)(

2n

k + 1

)

ζ4n(s, z + k) G = Sp(1, n)

ζ16(s, z) + 10ζ16(s, z + 1) + 28ζ16(s, z + 2)
+28ζ16(s, z + 3) + 10ζ16(s, z + 4) + ζ16(s, z + 5) G = F4.

Proof. By expressing λ in terms of an eigenvalue µ of ∆M ′ , we have

ζ

(

s, z − ρ0,
√

∆M ′ + ρ2
0

)

=
∑

µ

(

√

µ + ρ2
0 + (z − ρ0)

)−s

.

Now we carry out an explicit calculation for the case G = SU(1, n) by using Lemma 4.1. All
other cases can be treated similarly. Since µ = m(m + 2ρ0) for m = 0, 1, 2, ..., it holds that

ζ

(

s, z − ρ0,
√

∆M ′ + ρ2
0

)

=

∞
∑

m=0

mult(m(m + 2ρ0), ∆M ′)(m + z)−s.
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Since we have ρ0 = n
2

and M ′ = Pn� ,

∞
∑

m=0

mult(m(m + 2ρ0), ∆Pn� )(m + z)−s =
∞
∑

m=0

n
∑

k=0

(

n

k

)2

2nHm−k(m + z)−s

=
n
∑

k=0

(

n

k

)2 ∞
∑

m=0

2nHm(m + k + z)−s

=
n
∑

k=0

(

n

k

)2

ζ2n(s, z + k).

Thus in particular we see that (4.10) is regular at s = 0.
Let A be an operator whose eigenvalues are 0 < a1 ≤ a2 ≤ a3 ≤ · · · . We define the

regularized determinant by

det(A) =
∞
∐

n=1

an := exp (−ζ ′
A(0)) ,

when the spectral zeta function ζA(s) :=
∞
∑

n=1

a−s
n is regular at s = 0. (Cf. Deninger [D] and

Manin [Ma].) For example, the multiple gamma functions have the following determinant
expressions:

Γr(z, ω) = det(Dω + z)−1

and
Γr(z) = det(Dr + z)−1,

where

Dω = ω1
∂

∂t1
+ · · ·+ ωr

∂

∂tr
: C[t1, · · · , tr] −→ C[t1, · · · , tr]

and Dr := ∂
∂t1

+ · · ·+ ∂
∂tr

. Consequently the multiple sine functions can also be expressed by
some regularized determinants.

The regularity of (4.10) at s = 0 allows us to define

det

(

√

∆M ′ + ρ2
0 + z

)

= exp

(

−ζ ′
(

0, z,
√

∆M ′ + ρ2
0

))

.
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Corollary 4.5

det

(

√

∆M ′ + ρ2
0 + s − ρ0

)−1

=







































Γ2n(s)Γ2n(s + 1) G = SO(1, 2n)
n
∏

k=0

Γ2n(s + k)(
n
k)

2

G = SU(1, n)

2n−1
∏

k=0

Γ4n(s + k)
1
2n(2n

k )( 2n
k+1) G = Sp(1, n)

Γ16(s)Γ16(s + 1)10Γ16(s + 2)28Γ16(s + 3)28

×Γ16(s + 4)10Γ16(s + 5) G = F4

(4.11)

Corollary 4.6

exp

(∫ s−ρ0

0

µM(it)dt

)(−1)(dim M)/2

=





det
(

√

∆M ′ + ρ2
0 + (s − ρ0)

)

det
(

√

∆M ′ + ρ2
0 − (s − ρ0)

)





(−1)dim M/2

. (4.12)

Proof. This is an immediate consequence from (4.9) and (4.11).

Proof of Theorem 1.1 The identities (1.7) are obtained from (4.11). The symmetric func-
tional equation is deduced by (4.12).
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